## Abstract

Rig groupoids provide a semantic model of π, a universal classical reversible programming language over finite types. We prove that extending rig groupoids with just two maps and three equations about them results in a model of quantum computing that is computationally universal and equationally sound and complete for a variety of gate sets. The first map corresponds to an 8th root of the identity morphism on the unit 1. The second map corresponds to a square root of the symmetry on 1+1. As square roots are generally not unique and can sometimes even be trivial, the maps are constrained to satisfy a nondegeneracy axiom, which we relate to the Euler decomposition of the Hadamard gate. The semantic construction is turned into an extension of π, called √π, that is a computationally universal quantum programming language equipped with an equational theory that is sound and complete with respect to the Clifford gate set, the standard gate set of Clifford+T restricted to ≤2 qubits, and the computationally universal Gaussian Clifford+T gate set.

Original language | English |
---|---|

Journal | Proceedings of the ACM on Programming Languages |

Volume | 8 |

Issue number | POPL |

Pages (from-to) | 546-574 |

DOIs | |

Publication status | Published - Jan 2024 |

## Keywords

- equational theory
- quantum programming language
- reversible computing
- rig category
- unitary quantum computing