Uptake of New Lipid-Coated Nanoparticles Containing Falcarindiol by Human Mesenchymal Stem Cells

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Nanoparticles are the focus of an increased interest in drug delivery systems for cancer therapy. Lipid-coated nanoparticles are inspired in structure and size by low-density lipoproteins (LDLs) because cancer cells have an increased need for cholesterol to proliferate, and this has been exploited as a mechanism for delivering anticancer drugs to cancer cells. Moreover, depending on drug chemistry, encapsulating the drug can be advantageous to avoid degradation of the drug during circulation in vivo. Therefore, in this study, this design is used to fabricate lipid-coated nanoparticles of the anticancer drug falcarindiol, providing a potential new delivery system of falcarindiol in order to stabilize its chemical structure against degradation and improve its uptake by tumors. Falcarindiol nanoparticles, with a phospholipid and cholesterol monolayer encapsulating the purified drug core of the particle, were designed. The lipid monolayer coating consists of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol (Chol), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE PEG 2000) along with the fluorescent label DiI (molar ratios of 43:50:5:2). The nanoparticles are fabricated using the rapid injection method, which is a fast and simple technique to precipitate nanoparticles by good-solvent for anti-solvent exchange. It consists of a rapid injection of an ethanol solution containing the nanoparticle components into an aqueous phase. The size of the fluorescent nanoparticles is measured using dynamic light scattering (DLS) at 74.1 ± 6.7 nm. The uptake of the nanoparticles is tested in human mesenchymal stem cells (hMSCs) and imaged using fluorescence and confocal microscopy. The uptake of the nanoparticles is observed in hMSCs, suggesting the potential for such a stable drug delivery system for falcarindiol.
Original languageEnglish
JournalJournal of Visualized Experiments
Issue number144
ISSN1940-087X
DOIs
Publication statusPublished - 10. Feb 2019

Fingerprint

Stem cells
Mesenchymal Stromal Cells
Lipids
Nanoparticles
Cholesterol
Pharmaceutical Preparations
Monolayers
Neoplasms
Cells
falcarindiol
Lipoproteins
Degradation
Confocal microscopy
Fluorescence microscopy
Phospholipids
Dynamic light scattering
LDL Lipoproteins
Fluorescence Microscopy
Confocal Microscopy
Polyethylene glycols

Cite this

@article{7a219a34fabd4a719151c732b8dbd51d,
title = "Uptake of New Lipid-Coated Nanoparticles Containing Falcarindiol by Human Mesenchymal Stem Cells",
abstract = "Nanoparticles are the focus of an increased interest in drug delivery systems for cancer therapy. Lipid-coated nanoparticles are inspired in structure and size by low-density lipoproteins (LDLs) because cancer cells have an increased need for cholesterol to proliferate, and this has been exploited as a mechanism for delivering anticancer drugs to cancer cells. Moreover, depending on drug chemistry, encapsulating the drug can be advantageous to avoid degradation of the drug during circulation in vivo. Therefore, in this study, this design is used to fabricate lipid-coated nanoparticles of the anticancer drug falcarindiol, providing a potential new delivery system of falcarindiol in order to stabilize its chemical structure against degradation and improve its uptake by tumors. Falcarindiol nanoparticles, with a phospholipid and cholesterol monolayer encapsulating the purified drug core of the particle, were designed. The lipid monolayer coating consists of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol (Chol), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE PEG 2000) along with the fluorescent label DiI (molar ratios of 43:50:5:2). The nanoparticles are fabricated using the rapid injection method, which is a fast and simple technique to precipitate nanoparticles by good-solvent for anti-solvent exchange. It consists of a rapid injection of an ethanol solution containing the nanoparticle components into an aqueous phase. The size of the fluorescent nanoparticles is measured using dynamic light scattering (DLS) at 74.1 ± 6.7 nm. The uptake of the nanoparticles is tested in human mesenchymal stem cells (hMSCs) and imaged using fluorescence and confocal microscopy. The uptake of the nanoparticles is observed in hMSCs, suggesting the potential for such a stable drug delivery system for falcarindiol.",
author = "Oll{\'e}, {Emma Pip{\'o}} and Prasad Walke and Martine Notabi and Rime El-Houri and Andersen, {Morten {\O}stergaard} and David Needham and Arnspang, {Eva C.}",
year = "2019",
month = "2",
day = "10",
doi = "10.3791/59094",
language = "English",
journal = "Journal of Visualized Experiments",
issn = "1940-087X",
publisher = "Journal of Visualized Experiments",
number = "144",

}

Uptake of New Lipid-Coated Nanoparticles Containing Falcarindiol by Human Mesenchymal Stem Cells. / Ollé, Emma Pipó ; Walke, Prasad; Notabi, Martine; El-Houri, Rime; Andersen, Morten Østergaard; Needham, David; Arnspang, Eva C.

In: Journal of Visualized Experiments, No. 144, 10.02.2019.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Uptake of New Lipid-Coated Nanoparticles Containing Falcarindiol by Human Mesenchymal Stem Cells

AU - Ollé, Emma Pipó

AU - Walke, Prasad

AU - Notabi, Martine

AU - El-Houri, Rime

AU - Andersen, Morten Østergaard

AU - Needham, David

AU - Arnspang, Eva C.

PY - 2019/2/10

Y1 - 2019/2/10

N2 - Nanoparticles are the focus of an increased interest in drug delivery systems for cancer therapy. Lipid-coated nanoparticles are inspired in structure and size by low-density lipoproteins (LDLs) because cancer cells have an increased need for cholesterol to proliferate, and this has been exploited as a mechanism for delivering anticancer drugs to cancer cells. Moreover, depending on drug chemistry, encapsulating the drug can be advantageous to avoid degradation of the drug during circulation in vivo. Therefore, in this study, this design is used to fabricate lipid-coated nanoparticles of the anticancer drug falcarindiol, providing a potential new delivery system of falcarindiol in order to stabilize its chemical structure against degradation and improve its uptake by tumors. Falcarindiol nanoparticles, with a phospholipid and cholesterol monolayer encapsulating the purified drug core of the particle, were designed. The lipid monolayer coating consists of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol (Chol), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE PEG 2000) along with the fluorescent label DiI (molar ratios of 43:50:5:2). The nanoparticles are fabricated using the rapid injection method, which is a fast and simple technique to precipitate nanoparticles by good-solvent for anti-solvent exchange. It consists of a rapid injection of an ethanol solution containing the nanoparticle components into an aqueous phase. The size of the fluorescent nanoparticles is measured using dynamic light scattering (DLS) at 74.1 ± 6.7 nm. The uptake of the nanoparticles is tested in human mesenchymal stem cells (hMSCs) and imaged using fluorescence and confocal microscopy. The uptake of the nanoparticles is observed in hMSCs, suggesting the potential for such a stable drug delivery system for falcarindiol.

AB - Nanoparticles are the focus of an increased interest in drug delivery systems for cancer therapy. Lipid-coated nanoparticles are inspired in structure and size by low-density lipoproteins (LDLs) because cancer cells have an increased need for cholesterol to proliferate, and this has been exploited as a mechanism for delivering anticancer drugs to cancer cells. Moreover, depending on drug chemistry, encapsulating the drug can be advantageous to avoid degradation of the drug during circulation in vivo. Therefore, in this study, this design is used to fabricate lipid-coated nanoparticles of the anticancer drug falcarindiol, providing a potential new delivery system of falcarindiol in order to stabilize its chemical structure against degradation and improve its uptake by tumors. Falcarindiol nanoparticles, with a phospholipid and cholesterol monolayer encapsulating the purified drug core of the particle, were designed. The lipid monolayer coating consists of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol (Chol), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE PEG 2000) along with the fluorescent label DiI (molar ratios of 43:50:5:2). The nanoparticles are fabricated using the rapid injection method, which is a fast and simple technique to precipitate nanoparticles by good-solvent for anti-solvent exchange. It consists of a rapid injection of an ethanol solution containing the nanoparticle components into an aqueous phase. The size of the fluorescent nanoparticles is measured using dynamic light scattering (DLS) at 74.1 ± 6.7 nm. The uptake of the nanoparticles is tested in human mesenchymal stem cells (hMSCs) and imaged using fluorescence and confocal microscopy. The uptake of the nanoparticles is observed in hMSCs, suggesting the potential for such a stable drug delivery system for falcarindiol.

U2 - 10.3791/59094

DO - 10.3791/59094

M3 - Journal article

C2 - 30799864

JO - Journal of Visualized Experiments

JF - Journal of Visualized Experiments

SN - 1940-087X

IS - 144

ER -