Toward complete optical coupling to confined surface polaritons

Saad Abdullah, Eduardo J. C. Dias, Jan Krpenský, Vahagn Mkhitaryan, F. Javier García de Abajo

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Optical coupling between propagating light and confined surface polaritons plays a pivotal role in the practical design of nanophotonic devices. However, the coupling efficiency decreases dramatically with the degree of mode confinement due to the mismatch that exists between the light and polariton wavelengths, and despite the intense efforts made to explore different mechanisms proposed to circumvent this problem, the realization of a flexible scheme to efficiently couple light to polaritons remains a challenge. Here, we experimentally demonstrate an efficient coupling of light to surface-plasmon polaritons assisted by engineered dipolar scatterers placed at an optimum distance from the surface. Specifically, we fabricate gold disks separated by a silica spacer from a planar gold surface and seek to achieve perfect coupling conditions by tuning the spacer thickness for a given scatterer geometry that resonates at a designated optical frequency. We measure a maximum light-to-plasmon coupling cross section of the order of the square of the light wavelength at an optimum distance that results from the interplay between a large particle-surface interaction and a small degree of surface-driven particle-dipole quenching, both of which are favored at small separations. Our experiments, in agreement with both analytical theory and electromagnetic simulations, support the use of optimally placed engineered scatterers as a disruptive approach to solving the long-standing problem of in/out-coupling in nanophotonics.

Original languageEnglish
JournalACS Photonics
Volume11
Issue number6
Pages (from-to)2183-2193
ISSN2330-4022
DOIs
Publication statusPublished - 19. Jun 2024
Externally publishedYes

Keywords

  • complete absorption
  • complete optical coupling
  • lattice resonances
  • nanoparticles
  • particle arrays
  • polaritonics

Fingerprint

Dive into the research topics of 'Toward complete optical coupling to confined surface polaritons'. Together they form a unique fingerprint.

Cite this