Total number of reads affects the accuracy of fetal fraction estimates in NIPT

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

BACKGROUND: Sufficient fetal fraction (FF) is crucial for quality control of NIPT (Non-Invasive Prenatal Test) results. Different factors influencing bioinformatic estimation of FF should be considered when implementing NIPT. To what extent the total number of sequencing reads influences FF estimate has been unexplored. In this study, to test the robustness of SeqFF FF estimation and provide additional recommendations for NIPT analysis quality control, we compared the SeqFF FF estimates with two other methods and investigated how the number of sequencing reads and FF level affects the accuracy and precision of FF estimates.

METHODS: WGS data of 516 NIPT samples from a prenatal screening program was obtained. Sample data were randomly downsampled by the read count, and FF was calculated by SeqFF software. Then, the outcome was compared with FF estimates from SNP- and chrY-based methods. FF estimated with different read counts and FF levels were compared with FF at 30 M reads as a reference.

RESULTS: SeqFF FF highly correlates with SNP- and chrY-based FF estimates. Raising read count from 2 M to 10 M drastically increased the accuracy of FF estimates. After adding more reads, we saw a further improvement in FF accuracy, reaching a plateau at 20 M reads. Precision of SeqFF FF estimate is independent of FF level in the sample.

CONCLUSION: SeqFF is a robust method for FF estimation for both genders and for any FF level in range 2-13%. Accuracy of FF estimates highly depends on the read count. We recommend using no less than 10 M reads to achieve accurate FF estimates for NIPT analysis in clinical settings.

Original languageEnglish
JournalMolecular Genetics & Genomic Medicine
Pages (from-to)e1653
ISSN2324-9269
DOIs
Publication statusE-pub ahead of print - 9. Mar 2021

Keywords

  • NIPT
  • fetal fraction
  • Cell-free DNA
  • NGS

Fingerprint Dive into the research topics of 'Total number of reads affects the accuracy of fetal fraction estimates in NIPT'. Together they form a unique fingerprint.

Cite this