The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice

Yuka Inaba, Emi Hashiuchi, Hitoshi Watanabe, Kumi Kimura, Yu Oshima, Kohsuke Tsuchiya, Shin Murai, Chiaki Takahashi, Michihiro Matsumoto, Shigetaka Kitajima, Yasuhiko Yamamoto, Masao Honda, Shun ichiro Asahara, Kim Ravnskjaer, Shin ichi Horike, Shuichi Kaneko, Masato Kasuga, Hiroyasu Nakano, Kenichi Harada, Hiroshi Inoue*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

31 Downloads (Pure)

Abstract

Hepatocellular death increases with hepatic steatosis aggravation, although its regulation remains unclear. Here we show that hepatic steatosis aggravation shifts the hepatocellular death mode from apoptosis to necroptosis, causing increased hepatocellular death. Our results reveal that the transcription factor ATF3 acts as a master regulator in this shift by inducing expression of RIPK3, a regulator of necroptosis. In severe hepatic steatosis, after partial hepatectomy, hepatic ATF3-deficient or -overexpressing mice display decreased or increased RIPK3 expression and necroptosis, respectively. In cultured hepatocytes, ATF3 changes TNFα-dependent cell death mode from apoptosis to necroptosis, as revealed by live-cell imaging. In non-alcoholic steatohepatitis (NASH) mice, hepatic ATF3 deficiency suppresses RIPK3 expression and hepatocellular death. In human NASH, hepatocellular damage is correlated with the frequency of hepatocytes expressing ATF3 or RIPK3, which overlap frequently. ATF3-dependent RIPK3 induction, causing a modal shift of hepatocellular death, can be a therapeutic target for steatosis-induced liver damage, including NASH.

Original languageEnglish
Article number167
JournalNature Communications
Volume14
Issue number1
ISSN2041-1723
DOIs
Publication statusPublished - Dec 2023

Fingerprint

Dive into the research topics of 'The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice'. Together they form a unique fingerprint.

Cite this