Abstract
Fluctuations of the comoving curvature perturbation with wavelengths larger than the horizon length are governed by a Langevin equation whose stochastic noise arise from the quantum fluctuations that are assumed to become classical at horizon crossing. The infrared part of the curvature perturbation performs a random walk under the action of the stochastic noise and, at the same time, it suffers a classical force caused by its self-interaction. By a path-interal approach and, alternatively, by the standard procedure in random walk analysis of adiabatic elimination of fast variables, we derive the corresponding Kramers-Moyal equation which describes how the probability distribution of the comoving curvature perturbation at a given spatial point evolves in time and is a generalization of the Fokker-Planck equation. This approach offers an alternative way to study the late time behaviour of the correlators of the curvature perturbation from infrared effects.
Original language | Undefined/Unknown |
---|---|
Journal | JCAP |
Publication status | Published - 30. Mar 2011 |
Keywords
- astro-ph.CO
- hep-ph
- hep-th