The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

Krzysztof Wrzesinski, Adelina Rogowska-Wrzesinska, Rattiyaporn Kanlaya, Kamil Borkowski, Veit Schwämmle, Kira Joensen, Katarzyna Iwona Wojdyla, Vasco Botelho Carvalho, S. J. Fey

Research output: Contribution to journalJournal articleResearchpeer-review

490 Downloads (Pure)

Abstract

Introduction: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular
architecture at these two extremes and found that they are dramatically different.

Results: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell – along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex.

Summary: We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.
Original languageEnglish
Article numbere106973
JournalPLOS ONE
Volume9
Issue number9
Pages (from-to)1 - 15
Number of pages15
ISSN1932-6203
DOIs
Publication statusPublished - 15. Sept 2014

Bibliographical note

Happy Christmas to all our readers ;-)

Keywords

  • Cell culture
  • 3D Spheroids
  • Metabolic Equilibrium
  • Exponential growth
  • Hepatocytes
  • C3A
  • Cell structure
  • cell metabolism
  • Actins
  • Tubulin
  • Intermediate Filaments
  • DNA Repair
  • Splicing
  • Nuclear Pore Complex Proteins
  • Keratins
  • Translation
  • vesicles
  • Glycolysis
  • Cholesterol
  • Urea
  • Pentose phosphate shunt
  • Ribosomal Proteins
  • Spliceosome
  • Proteasome

Fingerprint

Dive into the research topics of 'The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments'. Together they form a unique fingerprint.

Cite this