Original language | English |
---|---|
Journal | Nature Methods |
Volume | 18 |
Issue number | 10 |
Pages (from-to) | 1128–1131 |
ISSN | 1548-7091 |
DOIs |
|
Publication status | Published - Oct 2021 |
Documents & Links
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
The AIMe registry for artificial intelligence in biomedical research. / Matschinske, Julian; Alcaraz, Nicolas; Benis, Arriel; Golebiewski, Martin; Grimm, Dominik G.; Heumos, Lukas; Kacprowski, Tim; Lazareva, Olga; List, Markus; Louadi, Zakaria; Pauling, Josch K.; Pfeifer, Nico; Röttger, Richard; Schwämmle, Veit; Sturm, Gregor; Traverso, Alberto; Van Steen, Kristel; de Freitas, Martiela Vaz; Villalba Silva, Gerda Cristal; Wee, Leonard; Wenke, Nina K.; Zanin, Massimiliano; Zolotareva, Olga; Baumbach, Jan; Blumenthal, David B.
In: Nature Methods, Vol. 18, No. 10, 10.2021, p. 1128–1131.Research output: Contribution to journal › Comment/debate › Research › peer-review
TY - JOUR
T1 - The AIMe registry for artificial intelligence in biomedical research
AU - Matschinske, Julian
AU - Alcaraz, Nicolas
AU - Benis, Arriel
AU - Golebiewski, Martin
AU - Grimm, Dominik G.
AU - Heumos, Lukas
AU - Kacprowski, Tim
AU - Lazareva, Olga
AU - List, Markus
AU - Louadi, Zakaria
AU - Pauling, Josch K.
AU - Pfeifer, Nico
AU - Röttger, Richard
AU - Schwämmle, Veit
AU - Sturm, Gregor
AU - Traverso, Alberto
AU - Van Steen, Kristel
AU - de Freitas, Martiela Vaz
AU - Villalba Silva, Gerda Cristal
AU - Wee, Leonard
AU - Wenke, Nina K.
AU - Zanin, Massimiliano
AU - Zolotareva, Olga
AU - Baumbach, Jan
AU - Blumenthal, David B.
N1 - Funding Information: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No 826078 (R.R., J.M., N.K.W., J.B.) and No 777111 (T.K., J.B.). M.Z. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 851255). K.V.S. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant TranSYS (grant no. 860895). This publication reflects only the authors’ view, and the European Commission is not responsible for any use that may be made of the information it contains. J.B., T.K., M.L. and Z.L. were supported by the German Federal Ministry of Education and Research (BMBF) within the e:Med framework (J.B., T.K., M.L. and Z.L.: grant no. 01ZX1908A; J.B.: grant no. 01ZX1910D). J.B. and O.Z. were supported by the BMBF within the CLINSPECT-M framework (grant no. 031L0214A). A.B.’s research is supported by a grant from Ariel University and Holon Institute of Technology, Israel: Applications of Artificial Intelligence for Enhancing the Efficiency of Vaccination Programs (grant no. RA19000000649). M.Z. acknowledges the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (grant no. MDM-2017-0711). M.V.d.F. and G.C.V.S. thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowships provided (M.V.d.F.: process no. 140002/2018-9; G.C.V.S.: process no. 148615/2018-0). M.V.d.F. and G.C.V.S. also thank FIPE/HCPA for financial support. Contributions by J.K.P. and O.L. were funded by the Bavarian State Ministry of Science and the Arts within the framework coordinated by the Bavarian Research Institute for Digital Transformation (bidt; J.K.P.: Junior Research Group LipiTUM; O.L.: Doctoral Fellow). N.P. was supported by the DFG Cluster of Excellence Machine Learning – New Perspectives for Science (EXC 2064/1, project no. 390727645), by the BMBF (Tübingen AI Center, FKZ: 01IS18039A) and by the BMBF within the Medical Informatics Initiative (DIFUTURE, reference no. 01ZZ1804D).
PY - 2021/10
Y1 - 2021/10
U2 - 10.1038/s41592-021-01241-0
DO - 10.1038/s41592-021-01241-0
M3 - Comment/debate
C2 - 34433960
AN - SCOPUS:85113433776
VL - 18
SP - 1128
EP - 1131
JO - Nature Methods
JF - Nature Methods
SN - 1548-7091
IS - 10
ER -