Sustainable platinum recycling through electrochemical dissolution of platinum nanoparticles from fuel cell electrodes

Raghunandan Sharma*, Kasper Rode Nielsen, Peter Brilner Lund, Søren Bredmose Simonsen, Laila Grahl-Madsen, Shuang Ma Andersen

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

130 Downloads (Pure)


Recycling of the platinum group metals (PGMs) containing industrial wastes obtained from proton exchange membrane fuel cells (PEMFCs), electrolyzers, catalytic convertors and others is of high strategical importance for industrial sustainability. In this work, a highly efficient and environmentally friendly platinum recycling method through potentiodynamic cycling in dilute acidic chloride solutions is demonstrated and optimized to recover platinum from fuel cell electrodes. The process parameters such as upper and lower potential limits are optimized to be 1.6 and 0.4 V vs. RHE. Both the dilute acidic and the acid free Cl‐ containing electrolytes may be used for the dissolution. Moreover, parameters such as protocol reliability, quantification method and comparison, electrode interface structure, dissolution product and mechanisms etc. are discussed. A study in 1 M HCl shows Pt dissolution rates as high as ~30 µg/cycle for potential cycling between 0.4 and 1.6 V (scan rate: 100 mV/s) for a PEMFC electrode with initial Pt loading of ~470 µg. The approach demonstrates a methodology for fast parameter screening on electrocatalyst dissolution and a proof of concept industrial recycling of spent electrocatalysts.
Original languageEnglish
Issue number17
Pages (from-to)4471-4482
Publication statusPublished - 2. Sept 2019


  • Platinum nanoparticle
  • Dissolution
  • Recycling
  • Electrochemistry
  • Potentiodynamic


Dive into the research topics of 'Sustainable platinum recycling through electrochemical dissolution of platinum nanoparticles from fuel cell electrodes'. Together they form a unique fingerprint.

Cite this