Stem cell survival is severely compromised by the thymidineanalog EdU (5-ethynyl-2'-deoxyuridine), an alternative to BrdU for proliferation assays and stem cell tracing

Ditte C Andersen, Ida Skovrind, Marlene Louise Christensen, Charlotte H Jensen, Søren P Sheikh

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Stem cell therapy has opened up the possibility of treating numerous degenerating diseases. However, we are still merely at the stage of identifying appropriate sources of stem cells and exploring their full differentiation potential. Thus, tracking the stem cells upon in vivo engraftment and during in vitro co-culture is very important and is an area of research embracing many pitfalls. 5-Ethynyl-2'-deoxyuridine (EdU), a rather new thymidine analog incorporated into DNA, has recently been suggested to be a novel highly valid alternative to other dyes for labeling of stem cells and subsequent tracing of their proliferation and differentiation ability. However, our results herein do not at any stage support this recommendation, since EdU severely reduces the viability of stem cells. Accordingly, we found that transplanted EdU-labeled stem cells hardly survive upon in vivo transplantation into regenerating muscle, whereas stem cells labeled in parallel with another dye survived very well and also participated in myofiber formation. Similar data were obtained upon in vitro myogenic culture, and further analysis showed that EdU reduced cell numbers by up to 88 % and increased the cell volume of remaining cells by as much as 91 %. Even at low EdU concentrations, cell survival and phenotype were substantially compromised, and the myogenic differentiation potential was inhibited. Since we examined both primary derived cells and cell lines from several species with the same result, this appears to be a common trait of EdU. We therefore suggest that EdU labeling should be avoided (or used with precaution) for stem cell tracing purposes.
Original languageEnglish
JournalAnalytical and Bioanalytical Chemistry
Volume405
Issue number29
Pages (from-to)9585-9591
ISSN1618-2642
DOIs
Publication statusPublished - 2013

Keywords

  • 5-Ethynyl-2′-deoxyuridine (EdU)
  • Proliferation assays
  • Stem cell survival
  • Stem cell tracing

Fingerprint

Dive into the research topics of 'Stem cell survival is severely compromised by the thymidineanalog EdU (5-ethynyl-2'-deoxyuridine), an alternative to BrdU for proliferation assays and stem cell tracing'. Together they form a unique fingerprint.

Cite this