Sp(1)-symmetric hyper-Kähler quantisation

Jørgen Ellegaard Andersen, Alessandro Malusà, Gabriele Rembado

Research output: Working paperResearch

Abstract

We provide a new general scheme for the geometric quantisation of Sp(1)-symmetric hyper-Kähler manifolds, considering Hilbert spaces of holomorphic sections over the associated twistor space. Under properness of an associated moment map, or other finiteness assumptions, we construct unitary quantum (super) representations of central extensions of certain subgroups of Riemannian isometries preserving the hyper-Kähler 2-sphere, and we study their decomposition in irreducible components. This quantisation scheme applies to hyper-Kähler vector spaces, the Taub-NUT metric on R×S3, moduli spaces of framed SU(r)-instantons on R4, and moduli spaces of monopoles on R3.
Original languageEnglish
PublisherarXiv.org
Number of pages29
Publication statusPublished - 5. Nov 2021

Fingerprint

Dive into the research topics of 'Sp(1)-symmetric hyper-Kähler quantisation'. Together they form a unique fingerprint.

Cite this