TY - JOUR
T1 - Sorting the Babble in Babel
T2 - Assessing the Performance of Language Detection Algorithms on the OpenAlex Database
AU - Sainte-Marie, Maxime Holmberg
AU - Kozlowski, Diego
AU - Céspedes, Lucía
AU - Larivière, Vincent
N1 - 33 pages, 4 figures
PY - 2025/2/5
Y1 - 2025/2/5
N2 - This project aims to compare various language classification procedures, procedures combining various Python language detection algorithms and metadata-based corpora extracted from manually-annotated articles sampled from the OpenAlex database. Following an analysis of precision and recall performance for each algorithm, corpus, and language as well as of processing speeds recorded for each algorithm and corpus type, overall procedure performance at the database level was simulated using probabilistic confusion matrices for each algorithm, corpus, and language as well as a probabilistic model of relative article language frequencies for the whole OpenAlex database. Results show that procedure performance strongly depends on the importance given to each of the measures implemented: for contexts where precision is preferred, using the LangID algorithm on the greedy corpus gives the best results; however, for all cases where recall is considered at least slightly more important than precision or as soon as processing times are given any kind of consideration, the procedure combining the FastSpell algorithm and the Titles corpus outperforms all other alternatives. Given the lack of truly multilingual, large-scale bibliographic databases, it is hoped that these results help confirm and foster the unparalleled potential of the OpenAlex database for cross-linguistic, bibliometric-based research and analysis.
AB - This project aims to compare various language classification procedures, procedures combining various Python language detection algorithms and metadata-based corpora extracted from manually-annotated articles sampled from the OpenAlex database. Following an analysis of precision and recall performance for each algorithm, corpus, and language as well as of processing speeds recorded for each algorithm and corpus type, overall procedure performance at the database level was simulated using probabilistic confusion matrices for each algorithm, corpus, and language as well as a probabilistic model of relative article language frequencies for the whole OpenAlex database. Results show that procedure performance strongly depends on the importance given to each of the measures implemented: for contexts where precision is preferred, using the LangID algorithm on the greedy corpus gives the best results; however, for all cases where recall is considered at least slightly more important than precision or as soon as processing times are given any kind of consideration, the procedure combining the FastSpell algorithm and the Titles corpus outperforms all other alternatives. Given the lack of truly multilingual, large-scale bibliographic databases, it is hoped that these results help confirm and foster the unparalleled potential of the OpenAlex database for cross-linguistic, bibliometric-based research and analysis.
KW - cs.CL
M3 - Journal article
SN - 2330-1635
JO - Journal of the Association for Information Science and Technology
JF - Journal of the Association for Information Science and Technology
ER -