RSPO3 is important for trabecular bone and fracture risk in mice and humans

Karin H. Nilsson, Petra Henning, Maha El Shahawy, Maria Nethander, Thomas Levin Andersen, Charlotte Ejersted, Jianyao Wu, Karin L. Gustafsson, Antti Koskela, Juha Tuukkanen, Pedro P.C. Souza, Jan Tuckermann, Mattias Lorentzon, Linda Engström Ruud, Terho Lehtimäki, Jon H. Tobias, Sirui Zhou, Ulf H. Lerner, J. Brent Richards, Sofia Movérare-Skrtic*Claes Ohlsson

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

23 Downloads (Pure)

Abstract

With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.

Original languageEnglish
Article number4923
JournalNature Communications
Volume12
Number of pages18
ISSN2041-1723
DOIs
Publication statusPublished - 13. Aug 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Keywords

  • Animals
  • Bone Density
  • Cancellous Bone/injuries
  • Cell Differentiation/genetics
  • Cell Proliferation/genetics
  • Cells, Cultured
  • Fractures, Bone/genetics
  • Genetic Predisposition to Disease/genetics
  • Humans
  • Mendelian Randomization Analysis/methods
  • Mice, Knockout
  • Mice, Transgenic
  • Osteoblasts/cytology
  • Polymorphism, Single Nucleotide
  • Risk Factors
  • Thrombospondins/deficiency

Fingerprint

Dive into the research topics of 'RSPO3 is important for trabecular bone and fracture risk in mice and humans'. Together they form a unique fingerprint.

Cite this