TY - JOUR
T1 - Restoration of euthyroidism in women with Hashimoto’s thyroiditis changes bone microarchitecture but not estimated bone strength
AU - Obling, Maria Lohman
AU - Nicolaisen, Pia
AU - Brix, Thomas Heiberg
AU - Winther, Kristian Hillert
AU - Hansen, Stinus
AU - Hegedüs, Laszlo
AU - Hermann, Anne Pernille
AU - Bonnema, Steen Joop
PY - 2021/2
Y1 - 2021/2
N2 - Purpose: Fracture risk in hypothyroid patients is debated, and since the effects of hypothyroidism on bone microarchitecture and strength are unclarified, we investigated these characteristics by high-resolution peripheral quantitative computed tomography (HR-pQCT). Methods: Two approaches were used: a cross-sectional control study, comparing 32 hypothyroid women (mean age; 47 ± 12 years) suffering from Hashimoto’s thyroiditis with 32 sex-, age-, and menopause-matched healthy controls; a prospective study, where 27 of the women were reexamined 1 year after restoration of euthyroidism. HR-pQCT of the distal radius and tibia, and dual-energy X-ray absorptiometry (DXA) of the spine and hip were performed. Bone strength was estimated using a finite element analysis (FEA). Results: Cross-sectional control study: in the radius, total (mean 14.6 ± 29.3% (SD); p = 0.04) and trabecular bone areas (19.8 ± 37.1%, p = 0.04) were higher, and cortical volumetric bone mineral density (vBMD) lower (−2.2 ± 6.5%, p = 0.032) in hypothyroid patients than in controls. All indices of tibia cortical and trabecular vBMD, microarchitecture, and estimated bone strength were similar between groups, as was hip and spine areal BMD (aBMD). Prospective study: in the radius, mean cortical (−0.9 ± 1.8%, p = 0.02) and trabecular (−1.5 ± 4.6%, p = 0.02) vBMD decreased, and cortical porosity increased (18.9 ± 32.7%, p = 0.02). In the tibia, mean total vBMD (−1.1 ± 1.9%, p = 0.01) and cortical vBMD (−0.8 ± 1.4%, p = 0.01) decreased, while cortical porosity (8.2 ± 11.5%, p = 0.002) and trabecular area (0.2 ± 0.6%, p = 0.047) increased. No changes in FEA were detected. Lumbar spine aBMD decreased (−1.3 ± 3.0%, p = 0.04). Conclusions: Hypothyroidism was associated with an increased trabecular bone area and a lower mineral density of cortical bone in the radius, as assessed by HR-pQCT. Restoration of euthyroidism mainly increased cortical porosity, while estimated bone strength was unaffected.
AB - Purpose: Fracture risk in hypothyroid patients is debated, and since the effects of hypothyroidism on bone microarchitecture and strength are unclarified, we investigated these characteristics by high-resolution peripheral quantitative computed tomography (HR-pQCT). Methods: Two approaches were used: a cross-sectional control study, comparing 32 hypothyroid women (mean age; 47 ± 12 years) suffering from Hashimoto’s thyroiditis with 32 sex-, age-, and menopause-matched healthy controls; a prospective study, where 27 of the women were reexamined 1 year after restoration of euthyroidism. HR-pQCT of the distal radius and tibia, and dual-energy X-ray absorptiometry (DXA) of the spine and hip were performed. Bone strength was estimated using a finite element analysis (FEA). Results: Cross-sectional control study: in the radius, total (mean 14.6 ± 29.3% (SD); p = 0.04) and trabecular bone areas (19.8 ± 37.1%, p = 0.04) were higher, and cortical volumetric bone mineral density (vBMD) lower (−2.2 ± 6.5%, p = 0.032) in hypothyroid patients than in controls. All indices of tibia cortical and trabecular vBMD, microarchitecture, and estimated bone strength were similar between groups, as was hip and spine areal BMD (aBMD). Prospective study: in the radius, mean cortical (−0.9 ± 1.8%, p = 0.02) and trabecular (−1.5 ± 4.6%, p = 0.02) vBMD decreased, and cortical porosity increased (18.9 ± 32.7%, p = 0.02). In the tibia, mean total vBMD (−1.1 ± 1.9%, p = 0.01) and cortical vBMD (−0.8 ± 1.4%, p = 0.01) decreased, while cortical porosity (8.2 ± 11.5%, p = 0.002) and trabecular area (0.2 ± 0.6%, p = 0.047) increased. No changes in FEA were detected. Lumbar spine aBMD decreased (−1.3 ± 3.0%, p = 0.04). Conclusions: Hypothyroidism was associated with an increased trabecular bone area and a lower mineral density of cortical bone in the radius, as assessed by HR-pQCT. Restoration of euthyroidism mainly increased cortical porosity, while estimated bone strength was unaffected.
KW - Bone microarchitecture
KW - HR-pQCT
KW - Hypothyroidism
KW - Levothyroxine
U2 - 10.1007/s12020-020-02398-y
DO - 10.1007/s12020-020-02398-y
M3 - Journal article
C2 - 32623638
AN - SCOPUS:85087464726
SN - 1355-008X
VL - 71
SP - 397
EP - 406
JO - Endocrine
JF - Endocrine
IS - 2
ER -