Recoding of the stop codon UGA to glycine by a BD1-5/SN-2 bacterium and niche partitioning between Alpha- and Gammaproteobacteria in a tidal sediment microbial community naturally selected in a laboratory chemostat

Anna Hanke, Emmo Hamann, Ritin Sharma, Jeanine S Geelhoed, Theresa Hargesheimer, Beate Kraft, Volker Meyer, Sabine Lenk, Harald Osmers, Rong Wu, Kofi Makinwa, Robert L Hettich, Jillian F Banfield, Halina E Tegetmeyer, Marc Strous

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Sandy coastal sediments are global hotspots for microbial mineralization of organic matter and denitrification. These sediments are characterized by advective porewater flow, tidal cycling and an active and complex microbial community. Metagenomic sequencing of microbial communities sampled from such sediments showed that potential sulfur oxidizing Gammaproteobacteria and members of the enigmatic BD1-5/SN-2 candidate phylum were abundant in situ (>10% and ~2% respectively). By mimicking the dynamic oxic/anoxic environmental conditions of the sediment in a laboratory chemostat, a simplified microbial community was selected from the more complex inoculum. Metagenomics, proteomics and fluorescence in situ hybridization showed that this simplified community contained both a potential sulfur oxidizing Gammaproteobacteria (at 24 ± 2% abundance) and a member of the BD1-5/SN-2 candidate phylum (at 7 ± 6% abundance). Despite the abundant supply of organic substrates to the chemostat, proteomic analysis suggested that the selected gammaproteobacterium grew partially autotrophically and performed hydrogen/formate oxidation. The enrichment of a member of the BD1-5/SN-2 candidate phylum enabled, for the first time, direct microscopic observation by fluorescent in situ hybridization and the experimental validation of the previously predicted translation of the stop codon UGA into glycine.

Original languageEnglish
JournalFrontiers in Microbiology
Volume5
Pages (from-to)231
ISSN1664-302X
DOIs
Publication statusPublished - 2014
Externally publishedYes

Keywords

  • Journal Article

Fingerprint

Dive into the research topics of 'Recoding of the stop codon UGA to glycine by a BD1-5/SN-2 bacterium and niche partitioning between Alpha- and Gammaproteobacteria in a tidal sediment microbial community naturally selected in a laboratory chemostat'. Together they form a unique fingerprint.

Cite this