Abstract
Cathepsin K (CatK), an essential collagenase in osteoclasts (OCs), is a potential therapeutic target for the treatment of osteoporosis. Using live-cell imaging, we monitored the bone resorptive behaviour of OCs during dose-dependent inhibition of CatK by an ectosteric (Tanshinone IIA sulfonate) and an active site inhibitor (odanacatib). CatK inhibition caused drastic reductions in the overall resorption speed of OCs. At IC 50 CatK-inhibitor concentration, OCs reduced about 40% of their trench-forming capacity and at fourfold IC 50 concentrations, a > 95% reduction was observed. The majority of CatK-inhibited OCs (~ 75%) were involved in resorption-migration-resorption episodes forming adjacent pits, while ~ 25% were stagnating OCs which remained associated with the same excavation. We also observed fusions of OCs during the resorption process both in control and inhibitor-treated conditions, which increased their resorption speeds by 30-50%. Inhibitor IC 50-concentrations increased OC-fusion by twofold. Nevertheless, more fusion could not counterweigh the overall loss of resorption activity by inhibitors. Using an activity-based probe, we demonstrated the presence of active CatK at the resorbing front in pits and trenches. In conclusion, our data document how OCs respond to CatK-inhibition with respect to movement, bone resorption activity, and their attempt to compensate for inhibition by activating fusion.
Original language | English |
---|---|
Article number | 7358 |
Journal | Scientific Reports |
Volume | 14 |
Number of pages | 15 |
ISSN | 2045-2322 |
DOIs | |
Publication status | Published - 28. Mar 2024 |
Keywords
- Active-site probe
- Bone resorption
- Cathepsin K
- Cell fusion
- Human osteoclast
- Live-imaging