TY - JOUR
T1 - Quantifying the Relationship Between Curvature and Electric Potential in Lipid Bilayers
AU - Bruhn, Dennis Skjøth
AU - Lomholt, Michael Andersen
AU - Khandelia, Himanshu
PY - 2016
Y1 - 2016
N2 - Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that head group dipole moments, the lateral pressure profile across the bilayer and spontaneous curvature all systematically change with increasing membrane potentials. In particu- lar, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curva- tures corresponding to radii of around 500nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.
AB - Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular dynamics simulations, we show that head group dipole moments, the lateral pressure profile across the bilayer and spontaneous curvature all systematically change with increasing membrane potentials. In particu- lar, there is a linear dependence between the bending moment (the product of bending rigidity and spontaneous curvature) and the applied membrane potentials. We show that biologically relevant membrane potentials can induce biologically relevant curva- tures corresponding to radii of around 500nm. The implications of flexoelectricity in lipid bilayers are thus likely to be of considerable consequence both in biology and in model lipid bilayer systems.
U2 - 10.1021/acs.jpcb.6b03439
DO - 10.1021/acs.jpcb.6b03439
M3 - Journal article
C2 - 27163659
VL - 120
SP - 4812
EP - 4817
JO - Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
JF - Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
SN - 1520-6106
IS - 21
ER -