Polynomial approximation of quantum Lipschitz functions

Konrad Aguilar*, Jens Kaad, David Kyed

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

53 Downloads (Pure)

Abstract

We prove an approximation result for Lipschitz functions on the quantum sphere S2q, from which we deduce that the two natural quantum metric structures on S2q have quantum Gromov-Hausdorff distance zero.
Original languageEnglish
JournalDocumenta Mathematica
Volume27
Pages (from-to)765-787
ISSN1431-0635
DOIs
Publication statusPublished - 2022

Keywords

  • Berezin transform
  • Podleś sphere
  • Quantum metric spaces
  • fuzzy spheres
  • quantum GromovHausdorff distance
  • spectral triples

Fingerprint

Dive into the research topics of 'Polynomial approximation of quantum Lipschitz functions'. Together they form a unique fingerprint.

Cite this