TY - JOUR
T1 - Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells
AU - Andersen, Thomas L
AU - Søe, Kent
AU - Søndergaard, Teis Esben
AU - Plesner, Torben
AU - Delaisse, Jean-Marie
PY - 2010
Y1 - 2010
N2 - Osteolytic lesions are a hallmark of multiple myeloma. They are due to the hyperactivity of bone resorbing osteoclasts and hypoactivity of bone forming osteoblasts, in response to neighbouring myeloma cells. This study identified a structure that deeply affects this response, because of its impact on the physical organisation of the myeloma cell microenvironment. The proximity between myeloma cells and osteoclasts or osteoblasts was shown to be conditioned by the recently discovered layer of flat cells that separates the osteoclasts and osteoblasts from the bone marrow, by forming a canopy over bone remodelling compartment (BRC). These canopies are frequently disrupted in myeloma, and this disruption correlates with increased proximity and density of myeloma cells. In vitro evidence indicates that this disruption may be due to direct contact between myeloma and BRC canopy cells. Importantly, this disruption and increased proximity and density of myeloma cells coincides with key myeloma-induced bone events, such as osteolytic lesions, impaired bone formation despite increased bone resorption, and fusion of myeloma cells with osteoclasts thereby forming myeloma-osteoclast hybrid cells. These findings strongly support a critical role of BRC canopies in myeloma-induced bone disease. BRC canopies could therefore be considered as a new therapeutic target.
AB - Osteolytic lesions are a hallmark of multiple myeloma. They are due to the hyperactivity of bone resorbing osteoclasts and hypoactivity of bone forming osteoblasts, in response to neighbouring myeloma cells. This study identified a structure that deeply affects this response, because of its impact on the physical organisation of the myeloma cell microenvironment. The proximity between myeloma cells and osteoclasts or osteoblasts was shown to be conditioned by the recently discovered layer of flat cells that separates the osteoclasts and osteoblasts from the bone marrow, by forming a canopy over bone remodelling compartment (BRC). These canopies are frequently disrupted in myeloma, and this disruption correlates with increased proximity and density of myeloma cells. In vitro evidence indicates that this disruption may be due to direct contact between myeloma and BRC canopy cells. Importantly, this disruption and increased proximity and density of myeloma cells coincides with key myeloma-induced bone events, such as osteolytic lesions, impaired bone formation despite increased bone resorption, and fusion of myeloma cells with osteoclasts thereby forming myeloma-osteoclast hybrid cells. These findings strongly support a critical role of BRC canopies in myeloma-induced bone disease. BRC canopies could therefore be considered as a new therapeutic target.
U2 - 10.1111/j.1365-2141.2009.07980.x
DO - 10.1111/j.1365-2141.2009.07980.x
M3 - Journal article
C2 - 19919653
SN - 0007-1048
VL - 148
SP - 551
EP - 561
JO - British Journal of Haematology
JF - British Journal of Haematology
IS - 4
ER -