Multicolor bleach-rate imaging enlightens in vivo sterol transport

Daniel Wüstner, Daniel Sage

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Elucidation of in vivo cholesterol transport and its aberrations in cardiovascular diseases requires suitable model organisms and the development of appropriate monitoring technology. We recently presented a new approach to visualize transport of the intrinsically fluorescent sterol, dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel position, which can be used as a fingerprint to distinguish rapidly bleaching DHE from slowly bleaching autofluorescence in the animals. Here, we introduce multicolor bleach-rate sterol imaging. By this method, we demonstrate that some DHE is targeted to a population of basolateral recycling endosomes (RE) labelled with GFP-tagged RME-1 (GFP-RME-1) in the intestine of both, wild-type nematodes and mutant animals lacking intestinal gut granules (glo1-mutants). DHE-enriched intestinal organelles of glo1-mutants were decorated with GFPrme8, a marker for early endosomes. No co-localization was found with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans.

Original languageEnglish
JournalCommunicative & Integrative Biology
Volume3
Issue number4
Pages (from-to)370-373
Number of pages4
ISSN1942-0889
Publication statusPublished - 2011

Fingerprint

sterols
image analysis
bleaching
endosomes
Caenorhabditis elegans
mutants
cholesterol
Nematoda
auxotrophs
ergosterol
fluorescent dyes
organisms
Dermatoglyphics
cardiovascular diseases
recycling
Intestines
organelles
granules
animals
intestines

Cite this

@article{27e15b6f56a144d0aaed383d1970ffe3,
title = "Multicolor bleach-rate imaging enlightens in vivo sterol transport",
abstract = "Elucidation of in vivo cholesterol transport and its aberrations in cardiovascular diseases requires suitable model organisms and the development of appropriate monitoring technology. We recently presented a new approach to visualize transport of the intrinsically fluorescent sterol, dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel position, which can be used as a fingerprint to distinguish rapidly bleaching DHE from slowly bleaching autofluorescence in the animals. Here, we introduce multicolor bleach-rate sterol imaging. By this method, we demonstrate that some DHE is targeted to a population of basolateral recycling endosomes (RE) labelled with GFP-tagged RME-1 (GFP-RME-1) in the intestine of both, wild-type nematodes and mutant animals lacking intestinal gut granules (glo1-mutants). DHE-enriched intestinal organelles of glo1-mutants were decorated with GFPrme8, a marker for early endosomes. No co-localization was found with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans.",
author = "Daniel W{\"u}stner and Daniel Sage",
year = "2011",
language = "English",
volume = "3",
pages = "370--373",
journal = "Communicative & Integrative Biology",
issn = "1942-0889",
publisher = "Taylor & Francis",
number = "4",

}

Multicolor bleach-rate imaging enlightens in vivo sterol transport. / Wüstner, Daniel; Sage, Daniel.

In: Communicative & Integrative Biology, Vol. 3, No. 4, 2011, p. 370-373.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Multicolor bleach-rate imaging enlightens in vivo sterol transport

AU - Wüstner, Daniel

AU - Sage, Daniel

PY - 2011

Y1 - 2011

N2 - Elucidation of in vivo cholesterol transport and its aberrations in cardiovascular diseases requires suitable model organisms and the development of appropriate monitoring technology. We recently presented a new approach to visualize transport of the intrinsically fluorescent sterol, dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel position, which can be used as a fingerprint to distinguish rapidly bleaching DHE from slowly bleaching autofluorescence in the animals. Here, we introduce multicolor bleach-rate sterol imaging. By this method, we demonstrate that some DHE is targeted to a population of basolateral recycling endosomes (RE) labelled with GFP-tagged RME-1 (GFP-RME-1) in the intestine of both, wild-type nematodes and mutant animals lacking intestinal gut granules (glo1-mutants). DHE-enriched intestinal organelles of glo1-mutants were decorated with GFPrme8, a marker for early endosomes. No co-localization was found with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans.

AB - Elucidation of in vivo cholesterol transport and its aberrations in cardiovascular diseases requires suitable model organisms and the development of appropriate monitoring technology. We recently presented a new approach to visualize transport of the intrinsically fluorescent sterol, dehydroergosterol (DHE) in the genetically tractable model organism Caenorhabditis elegans (C. elegans). DHE is structurally very similar to cholesterol and ergosterol, two sterols used by the sterol-auxotroph nematode. We developed a new computational method measuring fluorophore bleaching kinetics at every pixel position, which can be used as a fingerprint to distinguish rapidly bleaching DHE from slowly bleaching autofluorescence in the animals. Here, we introduce multicolor bleach-rate sterol imaging. By this method, we demonstrate that some DHE is targeted to a population of basolateral recycling endosomes (RE) labelled with GFP-tagged RME-1 (GFP-RME-1) in the intestine of both, wild-type nematodes and mutant animals lacking intestinal gut granules (glo1-mutants). DHE-enriched intestinal organelles of glo1-mutants were decorated with GFPrme8, a marker for early endosomes. No co-localization was found with a lysosomal marker, GFP-LMP1. Our new methods hold great promise for further studies on endosomal sterol transport in C. elegans.

M3 - Journal article

VL - 3

SP - 370

EP - 373

JO - Communicative & Integrative Biology

JF - Communicative & Integrative Biology

SN - 1942-0889

IS - 4

ER -