TY - JOUR
T1 - More on the weak gravity conjecture via convexity of charged operators
AU - Antipin, Oleg
AU - Bersini, Jahmall
AU - Sannino, Francesco
AU - Wang, Zhi Wei
AU - Zhang, Chen
N1 - Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space, the conformal dimension ∆(Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in various dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4 + ϵ dimensions. As an example of the second type, we consider the U(N) × U(M) model in 4 − ϵ dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.
AB - The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space, the conformal dimension ∆(Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in various dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4 + ϵ dimensions. As an example of the second type, we consider the U(N) × U(M) model in 4 − ϵ dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.
KW - Conformal and W Symmetry
KW - Conformal Field Theory
KW - Global Symmetries
U2 - 10.1007/JHEP12(2021)204
DO - 10.1007/JHEP12(2021)204
M3 - Journal article
AN - SCOPUS:85122077311
SN - 1126-6708
VL - 2021
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 12
M1 - 204
ER -