Molecular mechanism of GPCR spatial organization at the plasma membrane

Gabriele Kockelkoren, Line Lauritsen, Christopher G. Shuttle, Eleftheria Kazepidou, Ivana Vonkova, Yunxiao Zhang, Artù Breuer, Celeste Kennard, Rachel M. Brunetti, Elisa D’Este, Orion D. Weiner, Mark Uline*, Dimitrios Stamou*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

G-protein-coupled receptors (GPCRs) mediate many critical physiological processes. Their spatial organization in plasma membrane (PM) domains is believed to encode signaling specificity and efficiency. However, the existence of domains and, crucially, the mechanism of formation of such putative domains remain elusive. Here, live-cell imaging (corrected for topography-induced imaging artifacts) conclusively established the existence of PM domains for GPCRs. Paradoxically, energetic coupling to extremely shallow PM curvature (<1 µm−1) emerged as the dominant, necessary and sufficient molecular mechanism of GPCR spatiotemporal organization. Experiments with different GPCRs, H-Ras, Piezo1 and epidermal growth factor receptor, suggest that the mechanism is general, yet protein specific, and can be regulated by ligands. These findings delineate a new spatiomechanical molecular mechanism that can transduce to domain-based signaling any mechanical or chemical stimulus that affects the morphology of the PM and suggest innovative therapeutic strategies targeting cellular shape. [Figure not available: see fulltext.].

Original languageEnglish
JournalNature Chemical Biology
Volume20
Issue number2
Pages (from-to)142-150
ISSN1552-4450
DOIs
Publication statusPublished - Feb 2024
Externally publishedYes

Keywords

  • Cell Membrane/metabolism
  • Receptors, G-Protein-Coupled/metabolism
  • Signal Transduction

Fingerprint

Dive into the research topics of 'Molecular mechanism of GPCR spatial organization at the plasma membrane'. Together they form a unique fingerprint.

Cite this