Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents

Shuang Ma, Claus Henning Solterbeck, Madeleine Odgaard, Eivind Morten Skou

Research output: Contribution to journalJournal articleResearchpeer-review


Proton Exchange Membrane (PEM) fuel cell electrodes with different ionomer contents were studied with various microscopic techniques. The morphology and surface potential were examined by Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM), respectively. The particulate nature of the electrode was well displayed in the topography and phase images. The particle and pore size (Z) distributions showed the most frequent values at 30-40 nm and 20-30 nm, respectively. The particle size corresponds to the size of the carbon support for the platinum catalyst. Catalyst agglomeration was observed in high ionomer content electrodes. The surface potential images showed distinct difference to the topography images. The overall grain size was seen to increase, the pore volume to decrease, the surface roughness to decrease, and the surface potential variation to increase with the increase of ionomer content in the catalyst layer. Transmission electron microscopy (TEM) was carried out on selective electrodes to provide additional information and confirmed with the AFM results. Cyclic voltammetry (CV) showed that the electrode containing 30 wt.% ionomer has maximum catalyst utilization.

Original languageEnglish
JournalApplied Physics A: Materials Science & Processing
Issue number3
Pages (from-to)581-589
Publication statusPublished - 2009

Cite this