Abstract
Regulation of the ion pumping activity of the Na(+),K(+)-ATPase is crucial to the survival of animal cells. Recent evidence has suggested that the activity of the enzyme could be controlled by glutathionylation of cysteine residue 45 of the β-subunit. Crystal structures so far available indicate that this cysteine is in a transmembrane domain of the protein. Here we have analysed via fluorescence and NMR spectroscopy as well as molecular dynamics simulations whether glutathione is able to penetrate into the interior of a lipid membrane. No evidence for any penetration of glutathione into the membrane was found. Therefore, the most likely mechanism whereby the cysteine residue could become glutathionylated is via a loosening of the α-β subunit association, creating a hydrophilic passageway between them to allow access of glutathione to the cysteine residue. By such a mechanism, glutathionylation of the protein would be expected to anchor the modified cysteine residue in a hydrophilic environment, inhibiting further motion of the β-subunit during the enzyme's catalytic cycle and suppressing enzymatic activity, as has been experimentally observed. The results obtained, therefore, suggest a possible structural mechanism of how the Na(+),K(+)-ATPase could be regulated by glutathione.
Original language | English |
---|---|
Journal | BBA Biomembranes |
Volume | 1848 |
Issue number | 10, Part A |
Pages (from-to) | 2430–2436 |
ISSN | 0005-2736 |
DOIs | |
Publication status | Published - 29. Jul 2015 |