Is a constant low-entropy process at the root of glycolytic oscillations?

Henrik Seir Thoke, Lars Folke Olsen, Lars Duelund, Roberto P. Stock , Thomas Heimburg, Luis Bagatolli

Research output: Contribution to journalJournal articleResearchpeer-review

129 Downloads (Pure)


We measured temporal oscillations in thermodynamic variables such as temperature, heat flux, and cellular volume in suspensions of non-dividing yeast cells which exhibit temporal glycolytic oscillations. Oscillations in these variables have the same frequency as oscillations in the activity of intracellular metabolites, suggesting strong coupling between them. These results can be interpreted in light of a recently proposed theoretical formalism in which isentropic thermodynamic systems can display coupled oscillations in all extensive and intensive variables, reminiscent of adiabatic waves. This interpretation suggests that oscillations may be a consequence of the requirement of living cells for a constant low-entropy state while simultaneously performing biochemical transformations, i.e., remaining metabolically active. This hypothesis, which is in line with the view of the cellular interior as a highly structured and near equilibrium system where energy inputs can be low and sustain regular oscillatory regimes, calls into question the notion that metabolic processes are essentially dissipative.
Original languageEnglish
JournalJournal of Biological Physics
Issue number3
Pages (from-to)419-431
Publication statusPublished - Sep 2018


  • Association-induction hypothesis
  • Glycolytic oscillations
  • Isentropic process
  • Onsager’s theory
  • Temperature oscillations
  • Thermodynamics
  • Models, Biological
  • Glycolysis
  • Entropy
  • Hot Temperature
  • Saccharomyces cerevisiae/physiology

Fingerprint Dive into the research topics of 'Is a constant low-entropy process at the root of glycolytic oscillations?'. Together they form a unique fingerprint.

Cite this