Investigations of potential non-amino acid SNAT2 inhibitors.

Sebastian Jakobsen, Emilie Fynbo Petersen, Carsten Uhd Nielsen*

*Corresponding author for this work

Research output: Contribution to journalJournal articleCommunication

20 Downloads (Pure)

Abstract

The sodium-coupled neutral amino acid transporter 2 (SNAT2, SLC38A2) has been implicated in cancer for its ability to supply cancer cells with glutamine and sarcosine. A recent high-throughput screen published by Gauthier-Coles et al. identified the non-amino acid 3-(N-methyl (4-methylphenyl)sulfonamido)-N-(2-trifluoromethylbenzyl)thiophene-2-carboxamide (MMTC or 57E) as a potent and selective SNAT2 inhibitor. Here we have investigated the ability of MMTC and four other compounds selected from the screen by Gauthier-Coles et al. to decrease 3H-Gly uptake in hyperosmotically treated human prostate cancer PC-3 cells. In these cells, SNAT2 is highly upregulated when the cells are hyperosmotically stressed for 24 h and is the primary contributor to glycine uptake. The five compounds were investigated at concentrations of 1–50 µM based on their equilibrium solubility. At 37°C the equilibrium solubility in HEPES buffered HBSS at pH 7.4 was measured to be 24.9 (53B), 56.1 (54F), 13.3 (55B), and 27.5 (57B) µM, respectively. The equilibrium solubility of MMTC was below the detection limit of the HPLC-UV method, thus less than 1.8 µM. However, a kinetic solubility of approximately 2.5–10 µM could be achieved during the course of the uptake study. In contrast to the previous publication, MMTC showed no inhibition of SNAT2-mediated 3H-Gly uptake in PC-3 cells at a concentration of 1 or 5 μM, despite a published IC 50 of 0.8 µM. Similarly, 53B, 55B, and 57B showed no inhibition at soluble conditions, whereas 54F showed approximately 20% inhibition at 50 µM. In our experimental setup, the investigated compounds showed limited potential as SNAT2 inhibitors.

Original languageEnglish
Article number1302445
JournalFrontiers in Pharmacology
Volume14
Number of pages7
ISSN1663-9812
DOIs
Publication statusPublished - 4. Jan 2024

Keywords

  • PC-3 cells
  • SNAT2
  • amino acid transport
  • cancer
  • inhibitor

Fingerprint

Dive into the research topics of 'Investigations of potential non-amino acid SNAT2 inhibitors.'. Together they form a unique fingerprint.

Cite this