Integrating Non-Spiking Interneurons in Spiking Neural Networks

Research output: Other contributionResearch

Abstract

Researchers working with neural networks have historically focused on either non-spiking neurons tractable for running on computers or more biologically plausible spiking neurons typically requiring special hardware. However, in nature homogeneous networks of neurons do not exist. Instead, spiking and non-spiking neurons cooperate, each bringing a different set of advantages. A well researched biological example of such a mixed network is a sensorimotor pathway, responsible for mapping sensory inputs to behavioral changes. This type of pathway is also well researched in robotics where it is applied to achieve closed-loop operation of legged robots by adapting amplitude, frequency, and phase of the motor output. In this paper we investigate how spiking and non-spiking neurons can be combined to create a sensorimotor neuron pathway capable of shaping network output based on analog input. We propose sub-threshold operation of an existing spiking neuron model to create a non-spiking neuron able to interpret analog information and communicate with spiking neurons. The validity of this methodology is confirmed through a simulation of a closed-loop amplitude regulating network inspired by the internal feedback loops found in insects for posturing. Additionally, we show that non-spiking neurons can effectively manipulate post-synaptic spiking neurons in an event-based architecture. The ability to work with mixed networks provides an opportunity for researchers to investigate new network architectures for adaptive controllers, potentially improving locomotion strategies of legged robots.
Original languageEnglish
Publication date2020
PublisherbioRxiv
DOIs
Publication statusPublished - 2020

Fingerprint

Dive into the research topics of 'Integrating Non-Spiking Interneurons in Spiking Neural Networks'. Together they form a unique fingerprint.

Cite this