Influence of input data on airflow network accuracy in residential buildings with natural wind- and stack-driven ventilation

Krzysztof Arendt, Marek Krzaczek, Jacek Tejchman

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

The airflow network (AFN) modeling approach provides an attractive balance between the accuracy and computational demand for naturally ventilated buildings. Its accuracy depends on input parameters such as wind pressure and opening discharge coefficients. In most cases, these parameters are obtained from secondary sources which are solely representative for very simplified buildings, i.e. for buildings without facade details. Although studies comparing wind pressure coefficients or discharge coefficients from different sources exist, the knowledge regarding the effect of input data on AFN is still poor. In this paper, the influence of wind pressure data on the accuracy of a coupled AFN-BES model for a real building with natural wind- and stack-driven ventilation was analyzed. The results of 8 computation cases with different wind pressure data from secondary sources were compared with the measured data. Both the indoor temperatures and the airflow were taken into account. The outcomes indicated that the source of wind pressure data had a significant influence on the model performance.
Original languageEnglish
JournalBuilding Simulation
Volume10
Issue number2
Pages (from-to)229-238
ISSN1996-3599
DOIs
Publication statusPublished - 2017

    Fingerprint

Keywords

  • airflow network
  • natural ventilation
  • numerical calculations
  • pivoted window
  • wind pressure

Cite this