TY - JOUR
T1 - High-fat meals do not affect thrombin formation and fibrin clot lysis in individuals with obesity during intentional weight loss
AU - Espenhain Landgrebe, Line
AU - Andersen, Vibeke
AU - Bang, Corinna
AU - Moitinho-Silva, Lucas
AU - Schwarz, Herbert
AU - Juhl, Claus Bogh
AU - Bladbjerg, Else
PY - 2022/1
Y1 - 2022/1
N2 - Repeated weight loss cycles are associated with increased cardiovascular morbidity. Meal-induced thrombin formation, measured as prothrombin fragment 1+2 (F1+2), is observed in individuals with overweight after weight loss, and postprandial effects can be one of the mechanisms underlying harmful effects during intentional weight loss. We hypothesize that consumption of high-fat meals during intentional weight loss triggers a prothrombotic state by increasing postprandial F1+2 or decreasing fibrin clot lysis in individuals with obesity, and that the response associates with the gut bacteria composition. A cross-over meal study was conducted in patients admitted to bariatric surgery during dietary weight loss (N = 20) and surgical weight loss (N = 16) (weight loss groups). High-fat (67 E%) and low-fat (16 E%) meals were served at 08:15 and 10:00 on 2 study days. Blood samples collected at 08:00 (fasting), 12:00, and 14:00 were analyzed for triglycerides, activated factor VII (FVIIa), F1+2, D-dimer, fibrinogen, tissue factor, and fibrin clot lysis. The proportion of Gram-negative bacteria and bacterial diversity were analyzed in fecal samples obtained less than 24 hours before the meal test. Triglyceride and FVIIa increased after high-fat meals in both weight loss groups, whereas D-dimer (dietary group) and F1+2 decreased and tissue factor and fibrin clot lysis did not change. There was a negative association between the proportion of Gram-negative bacteria and changes in FVIIa in the surgery group. Postprandial FVII activation after high-fat meals is not accompanied by increased F1+2, irrespective of the weight loss intervention, but might be associated with the proportion of Gram-negative gut bacteria.
AB - Repeated weight loss cycles are associated with increased cardiovascular morbidity. Meal-induced thrombin formation, measured as prothrombin fragment 1+2 (F1+2), is observed in individuals with overweight after weight loss, and postprandial effects can be one of the mechanisms underlying harmful effects during intentional weight loss. We hypothesize that consumption of high-fat meals during intentional weight loss triggers a prothrombotic state by increasing postprandial F1+2 or decreasing fibrin clot lysis in individuals with obesity, and that the response associates with the gut bacteria composition. A cross-over meal study was conducted in patients admitted to bariatric surgery during dietary weight loss (N = 20) and surgical weight loss (N = 16) (weight loss groups). High-fat (67 E%) and low-fat (16 E%) meals were served at 08:15 and 10:00 on 2 study days. Blood samples collected at 08:00 (fasting), 12:00, and 14:00 were analyzed for triglycerides, activated factor VII (FVIIa), F1+2, D-dimer, fibrinogen, tissue factor, and fibrin clot lysis. The proportion of Gram-negative bacteria and bacterial diversity were analyzed in fecal samples obtained less than 24 hours before the meal test. Triglyceride and FVIIa increased after high-fat meals in both weight loss groups, whereas D-dimer (dietary group) and F1+2 decreased and tissue factor and fibrin clot lysis did not change. There was a negative association between the proportion of Gram-negative bacteria and changes in FVIIa in the surgery group. Postprandial FVII activation after high-fat meals is not accompanied by increased F1+2, irrespective of the weight loss intervention, but might be associated with the proportion of Gram-negative gut bacteria.
KW - Bariatric surgery
KW - Catabolic state
KW - Coagulation activation
KW - Gut microbiota
KW - Hemostasis
U2 - 10.1016/j.nutres.2021.11.002
DO - 10.1016/j.nutres.2021.11.002
M3 - Journal article
C2 - 34922120
VL - 97
SP - 1
EP - 10
JO - Nutrition Research
JF - Nutrition Research
SN - 0271-5317
ER -