Gulf Stream Ring Water Intrusion on the Mid-Atlantic Bight Continental Shelf Break Affects Microbially Driven Carbon Cycling

Adrienne Hoarfrost*, John Paul Balmonte, Sherif Ghobrial, Kai Ziervogel, John Bane, Glen Gawarkiewicz, Carol Arnosti

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review


Warm core, anticyclonic rings that spin off from the Gulf Stream circulate through the region directly offshore of the Mid-Atlantic Bight. If a warm core ring reaches the continental shelf break, its warm, highly saline water may subduct under cooler, fresher continental shelf surface water, resulting in subsurface waters at the shelf break and over the upper continental slope with high temperatures and salinities and distinct physical and chemical properties characteristic of Gulf Stream water. Such intruding water may also have microbial communities with distinct functional capacities, which may in turn affect the rate and nature of carbon cycling in this coastal/shelf environment. However, the functional capabilities of microbial communities within ring intrusion waters relative to surrounding continental shelf waters are largely unexplored. We investigated microbial community capacity to initiate organic matter remineralization by measuring hydrolysis of a suite of polysaccharide, peptide, and glucose substrates along a transect oriented across the Mid-Atlantic Bight shelf, shelf break, and upper slope. At the outermost sampling site, warm and salty water derived from a Gulf Stream warm core ring was present in the lower portion of the water column. This water exhibited hydrolytic capacities distinct from other sampling sites, and exhibited lower heterotrophic bacterial productivity overall. Warm core rings adjacent to the Mid-Atlantic Bight shelf have increased in frequency and duration in recent years. As the influence of warm core rings on the continental shelf and slope increases in the future, the rate and nature of organic matter remineralization on the continental shelf may also shift.

Original languageEnglish
Article number394
JournalFrontiers in Marine Science
Issue number394
Publication statusPublished - 11. Jul 2019
Externally publishedYes


  • Carbon cycling
  • Enzymatic activity
  • Heterotrophy
  • Mid-Atlantic Bight
  • Ring intrusion
  • Warm core ring


Dive into the research topics of 'Gulf Stream Ring Water Intrusion on the Mid-Atlantic Bight Continental Shelf Break Affects Microbially Driven Carbon Cycling'. Together they form a unique fingerprint.

Cite this