Gene expression profiling of proximal and distal renal tubules in Atlantic salmon (Salmo salar) acclimated to fresh water and seawater

Research output: Contribution to journalJournal articleResearchpeer-review

37 Downloads (Pure)

Abstract

Euryhaline teleost kidneys undergo a major functional switch from being filtratory in freshwater (FW) to being predominantly secretory in seawater (SW) conditions. The transition involves both vascular and tubular effects. There is consensus that the glomerular filtration rate is greatly reduced upon exposure to hyperosmotic conditions. Yet, regulation at the tubular level has only been examined sporadically in a few different species. This study aimed to obtain a broader understanding of transcriptional regulation in proximal versus distal tubular segments during osmotic transitions. Proximal and distal tubule cells were dissected separately by laser capture microdissection, RNA was extracted, and relative mRNA expression levels of >30 targets involved in solute and water transport were quantified by quantitative PCR in relation to segment type in fish acclimated to FW or SW. The gene categories were aquaporins, solute transporters, fxyd proteins, and tight junction proteins. aqp8bb1, aqp10b1, nhe3, sglt1, slc41a1, cnnm3, fxyd12a, cldn3b, cldn10b, cldn15a, and cldn12 were expressed at a higher level in proximal compared with distal tubules. aqp1aa, aqp1ab, nka-a1a, nka-a1b, nkcc1a, nkcc2, ncc, clc-k, slc26a6C, sglt2, fxyd2, cldn3a, and occln were expressed at a higher level in distal compared with proximal tubules. Expression of aqp1aa, aqp3a1, aqp10b1, ncc, nhe3, cftr, sglt1, slc41a1, fxyd12a, cldn3a, cldn3b, cldn3c, cldn10b, cldn10e, cldn28a, and cldn30c was higher in SW- than in FW-acclimated salmon, whereas the opposite was the case for aqp1ab, slc26a6C, and fxyd2. The data show distinct segmental distribution of transport genes and a significant regulation of tubular transcripts when kidney function is modulated during salinity transitions.

Original languageEnglish
JournalAmerican journal of physiology. Renal physiology
Volume319
Issue number3
Pages (from-to)F380-F393
ISSN1931-857X
DOIs
Publication statusPublished - 1. Sep 2020

Keywords

  • ion transport
  • kidney
  • tubular dynamics
  • water transport

Fingerprint

Dive into the research topics of 'Gene expression profiling of proximal and distal renal tubules in Atlantic salmon (Salmo salar) acclimated to fresh water and seawater'. Together they form a unique fingerprint.

Cite this