TY - JOUR
T1 - Feasibility of United Arab Emirates Native Seaweed Ulva intestinalis as a Food Source
T2 - Study of Nutritional and Mineral Compositions
AU - Farzanah, Rashed Husain
AU - Clausen, Mathias Porsmose
AU - Arnspang, Eva C.
AU - Schmidt, Jens Ejbye
AU - Bastidas-Oyanedel, Juan-Rodrigo
PY - 2022/3
Y1 - 2022/3
N2 - Food resources are limited in arid countries such as the United Arab Emirates (UAE); the salinity of the groundwater, together with a lack of natural fresh water sources and arable land, force the country to import most of its food. However, seaweed could play an important role in providing a locally available food resource, as it does not require fresh water and arable land to grow. The traditional use of several seaweed species as food sources has been documented in Asia and the Americas, where their nutritional composition has been well reported. Although the UAE’s aquatic environment is quite harsh due to high water salinity (over 40 g/L) and high surface water temperatures (over 35 °C), its native seaweed species could play a role as a food source in this arid region, thereby bolstering the country’s level of food security. To evaluate its potential in this context, fresh samples of the native Ulva intestinalis seaweed were collected in the shallow waters of Abu Dhabi Emirate, UAE. These samples were calculated to contain 34.38 ± 0.24 kcal, with a biomass composition of 5.185 ± 0.04% carbohydrate, 3.32 ± 0.14% protein, and 0.04 ± 0.01% fat (by dry matter). Of all the minerals present in the biomass, potassium had the highest concentration (7947 ± 319.5 ppm), followed by magnesium (3075.9 ± 1357 ppm) and sodium (756.3 ± 478 ppm). The water-soluble vitamins B1, B2, B3, B6, and C were below the detection limit in the samples. The rich concentration of essential minerals such as potassium, magnesium, iron and zinc in Ulva intestinalis makes it a promising novel food source. To the best of our knowledge, this is the first experimental study to examine the feasibility of using seaweed that is native to the UAE as a nutritional and sustainable food source in order to address the challenge of food security currently being faced by the country.
AB - Food resources are limited in arid countries such as the United Arab Emirates (UAE); the salinity of the groundwater, together with a lack of natural fresh water sources and arable land, force the country to import most of its food. However, seaweed could play an important role in providing a locally available food resource, as it does not require fresh water and arable land to grow. The traditional use of several seaweed species as food sources has been documented in Asia and the Americas, where their nutritional composition has been well reported. Although the UAE’s aquatic environment is quite harsh due to high water salinity (over 40 g/L) and high surface water temperatures (over 35 °C), its native seaweed species could play a role as a food source in this arid region, thereby bolstering the country’s level of food security. To evaluate its potential in this context, fresh samples of the native Ulva intestinalis seaweed were collected in the shallow waters of Abu Dhabi Emirate, UAE. These samples were calculated to contain 34.38 ± 0.24 kcal, with a biomass composition of 5.185 ± 0.04% carbohydrate, 3.32 ± 0.14% protein, and 0.04 ± 0.01% fat (by dry matter). Of all the minerals present in the biomass, potassium had the highest concentration (7947 ± 319.5 ppm), followed by magnesium (3075.9 ± 1357 ppm) and sodium (756.3 ± 478 ppm). The water-soluble vitamins B1, B2, B3, B6, and C were below the detection limit in the samples. The rich concentration of essential minerals such as potassium, magnesium, iron and zinc in Ulva intestinalis makes it a promising novel food source. To the best of our knowledge, this is the first experimental study to examine the feasibility of using seaweed that is native to the UAE as a nutritional and sustainable food source in order to address the challenge of food security currently being faced by the country.
KW - seaweed
KW - Ulva intestinalis
KW - edible algae
KW - nutritional composition
KW - minerals
KW - food security
U2 - 10.3390/phycology2010008
DO - 10.3390/phycology2010008
M3 - Journal article
SN - 2673-9410
VL - 2
SP - 120
EP - 131
JO - Phycology
JF - Phycology
IS - 1
ER -