TY - JOUR
T1 - Epigenetic Silencing of LRP2 Is Associated with Dedifferentiation and Poor Survival in Multiple Solid Tumor Types
AU - Rasmussen, Martin Q.
AU - Tindbæk, Gitte
AU - Nielsen, Morten Muhlig
AU - Merrild, Camilla
AU - Steiniche, Torben
AU - Pedersen, Jakob Skou
AU - Moestrup, Søren K.
AU - Degn, Søren E.
AU - Madsen, Mette
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/3/17
Y1 - 2023/3/17
N2 - More than 80% of human cancers originate in epithelial tissues. Loss of epithelial cell characteristics are hallmarks of tumor development. Receptor-mediated endocytosis is a key function of absorptive epithelial cells with importance for cellular and organismal homeostasis. LRP2 (megalin) is the largest known endocytic membrane receptor and is essential for endocytosis of various ligands in specialized epithelia, including the proximal tubules of the kidney, the thyroid gland, and breast glandular epithelium. However, the role and regulation of LRP2 in cancers that arise from these tissues has not been delineated. Here, we examined the expression of LRP2 across 33 cancer types in The Cancer Genome Atlas. As expected, the highest levels of LRP2 were found in cancer types that arise from LRP2-expressing absorptive epithelial cells. However, in a subset of tumors from these cancer types, we observed epigenetic silencing of LRP2. LRP2 expression showed a strong inverse correlation to methylation of a specific CpG site (cg02361027) in the first intron of the LRP2 gene. Interestingly, low expression of LRP2 was associated with poor patient outcome in clear cell renal cell carcinoma, papillary renal cell carcinoma, mesothelioma, papillary thyroid carcinoma, and invasive breast carcinoma. Furthermore, loss of LRP2 expression was associated with dedifferentiated histological and molecular subtypes of these cancers. These observations now motivate further studies on the functional role of LRP2 in tumors of epithelial origin and the potential use of LRP2 as a cancer biomarker.
AB - More than 80% of human cancers originate in epithelial tissues. Loss of epithelial cell characteristics are hallmarks of tumor development. Receptor-mediated endocytosis is a key function of absorptive epithelial cells with importance for cellular and organismal homeostasis. LRP2 (megalin) is the largest known endocytic membrane receptor and is essential for endocytosis of various ligands in specialized epithelia, including the proximal tubules of the kidney, the thyroid gland, and breast glandular epithelium. However, the role and regulation of LRP2 in cancers that arise from these tissues has not been delineated. Here, we examined the expression of LRP2 across 33 cancer types in The Cancer Genome Atlas. As expected, the highest levels of LRP2 were found in cancer types that arise from LRP2-expressing absorptive epithelial cells. However, in a subset of tumors from these cancer types, we observed epigenetic silencing of LRP2. LRP2 expression showed a strong inverse correlation to methylation of a specific CpG site (cg02361027) in the first intron of the LRP2 gene. Interestingly, low expression of LRP2 was associated with poor patient outcome in clear cell renal cell carcinoma, papillary renal cell carcinoma, mesothelioma, papillary thyroid carcinoma, and invasive breast carcinoma. Furthermore, loss of LRP2 expression was associated with dedifferentiated histological and molecular subtypes of these cancers. These observations now motivate further studies on the functional role of LRP2 in tumors of epithelial origin and the potential use of LRP2 as a cancer biomarker.
KW - cancer biomarker
KW - epigenetics
KW - LRP2
KW - megalin
KW - methylation
KW - tumor dedifferentiation
U2 - 10.3390/cancers15061830
DO - 10.3390/cancers15061830
M3 - Journal article
C2 - 36980716
AN - SCOPUS:85151481675
SN - 2072-6694
VL - 15
JO - Cancers
JF - Cancers
IS - 6
M1 - 1830
ER -