TY - JOUR
T1 - Enhancing catalytic durability in alkaline oxygen evolution reaction through squaric acid anion intercalation
AU - Fan, Ruoyao
AU - Lu, Shanshan
AU - Wang, Fuli
AU - Zhang, Yusheng
AU - Hojamberdiev, Mirabbos
AU - Chai, Yongming
AU - Dong, Bin
AU - Zhang, Bin
N1 - Publisher Copyright:
© The Author(s) 2025.
PY - 2025
Y1 - 2025
N2 - The corrosive acidic interfacial microenvironment caused by rapid multi-step deprotonation of alkaline oxygen evolution reaction in industrial high current water electrolysis is one of the key problems limiting its stability. Some functional anions derived from electrocatalysis exhibit special functionalities in modulating the interface microenvironment, but this matter has not received adequate attention in academic discussions. Here we show that the coordinate squaric acid undergoes a dissolve-re-intercalation process in alkaline oxygen evolution, leading to its stabilization within the Fe-doped NiOOH interlayer in the form of the squaric acid anions (NiFe-SQ/NF-R). These intercalated squaric acid anions stabilizes OH− through multiple hydrogen bond interactions, which is conducive to maintaining high catalytic interface alkalinity. Hence, the interfacial acidification of prepared NiFe-SQ/NF-R is inhibited, resulting in a tenfold prolong in its catalytic durability (from 65 to 700 h) when exposed to 3.0 A cm−2, as opposed to NiFe-LDH/NF-R. This derived functional anion guarantees the enduring performance of the NiFe-derived electrocatalyst under high current densities by controlling the interfacial alkalinity.
AB - The corrosive acidic interfacial microenvironment caused by rapid multi-step deprotonation of alkaline oxygen evolution reaction in industrial high current water electrolysis is one of the key problems limiting its stability. Some functional anions derived from electrocatalysis exhibit special functionalities in modulating the interface microenvironment, but this matter has not received adequate attention in academic discussions. Here we show that the coordinate squaric acid undergoes a dissolve-re-intercalation process in alkaline oxygen evolution, leading to its stabilization within the Fe-doped NiOOH interlayer in the form of the squaric acid anions (NiFe-SQ/NF-R). These intercalated squaric acid anions stabilizes OH− through multiple hydrogen bond interactions, which is conducive to maintaining high catalytic interface alkalinity. Hence, the interfacial acidification of prepared NiFe-SQ/NF-R is inhibited, resulting in a tenfold prolong in its catalytic durability (from 65 to 700 h) when exposed to 3.0 A cm−2, as opposed to NiFe-LDH/NF-R. This derived functional anion guarantees the enduring performance of the NiFe-derived electrocatalyst under high current densities by controlling the interfacial alkalinity.
U2 - 10.1038/s41467-025-58623-7
DO - 10.1038/s41467-025-58623-7
M3 - Journal article
C2 - 40210626
AN - SCOPUS:105002978151
SN - 2041-1723
VL - 16
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 3407
ER -