TY - JOUR
T1 - Effect of size on concentrations and cadmium inducibility of metallothionein in the shore crab Carcinus maenas
AU - Bjerregaard, Poul
AU - Jensen, Lars Bo Ekhart
AU - Pedersen, Knud Ladegaard
PY - 2021/11
Y1 - 2021/11
N2 - Metallothionein (MT) plays an important role in protecting organisms from the adverse effects of Cd, Hg, Zn and Cu. Investigations on mammals show variations in metallothionein concentrations and inducibility with age. This has never been investigated in invertebrates, and we determined the concentrations and inducibility of metallothionein in gills and midgut gland of different size classes of shore crabs from uncontaminated areas. Metallothionein concentrations in gills and midgut gland ranged between 30 and 40 μg g
−1 dry weight with no differences among the different size classes. Concentrations of cadmium, copper and zinc in the midgut gland increased with increasing size of the crabs when the concentrations were expressed on a dry weight basis; water content in the midgut gland increased with the size and only the cadmium concentration increased with size when concentrations were expressed on wet weight basis. There was an inverse relationship between metallothionein and both copper and cadmium concentrations. Smaller crabs exposed to 1 mg Cd L
−1 accumulated higher concentrations of cadmium in midgut gland and gills than larger ones and metallothionein concentrations in the midgut gland were higher in the smaller crabs. However, the increase in metallothionein concentration per accumulated unit of cadmium showed a linear increase with the size of the crabs. The ratio [Cd]
midgut/[Cd]
gills decreased with the size of the crabs. The overall conclusion is that baseline metallothionein concentrations do not change with age in shore crabs, but that the inducibility of metallothionein upon cadmium challenge does.
AB - Metallothionein (MT) plays an important role in protecting organisms from the adverse effects of Cd, Hg, Zn and Cu. Investigations on mammals show variations in metallothionein concentrations and inducibility with age. This has never been investigated in invertebrates, and we determined the concentrations and inducibility of metallothionein in gills and midgut gland of different size classes of shore crabs from uncontaminated areas. Metallothionein concentrations in gills and midgut gland ranged between 30 and 40 μg g
−1 dry weight with no differences among the different size classes. Concentrations of cadmium, copper and zinc in the midgut gland increased with increasing size of the crabs when the concentrations were expressed on a dry weight basis; water content in the midgut gland increased with the size and only the cadmium concentration increased with size when concentrations were expressed on wet weight basis. There was an inverse relationship between metallothionein and both copper and cadmium concentrations. Smaller crabs exposed to 1 mg Cd L
−1 accumulated higher concentrations of cadmium in midgut gland and gills than larger ones and metallothionein concentrations in the midgut gland were higher in the smaller crabs. However, the increase in metallothionein concentration per accumulated unit of cadmium showed a linear increase with the size of the crabs. The ratio [Cd]
midgut/[Cd]
gills decreased with the size of the crabs. The overall conclusion is that baseline metallothionein concentrations do not change with age in shore crabs, but that the inducibility of metallothionein upon cadmium challenge does.
KW - Cadmium
KW - Copper
KW - Metallothionein
KW - Shore crab Carcinus maenas
KW - Size
KW - Zinc
U2 - 10.1016/j.cbpc.2021.109146
DO - 10.1016/j.cbpc.2021.109146
M3 - Journal article
C2 - 34293485
VL - 249
JO - Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology
JF - Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology
SN - 1532-0456
M1 - 109146
ER -