Direct generation of entangled photon pairs in nonlinear optical waveguides

Álvaro Rodríguez Echarri, Joel D. Cox, F. Javier García De Abajo*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

2 Downloads (Pure)


Entangled photons are pivotal elements in emerging quantum information technologies. While several schemes are available for the production of entangled photons, they typically require the assistance of cumbersome optical elements to couple them to other components involved in logic operations. Here, we introduce a scheme by which entangled photon pairs are directly generated as guided mode states in optical waveguides. The scheme relies on the intrinsic nonlinearity of the waveguide material, circumventing the use of bulky optical components and their associated phase-matching constraints. Specifically, we consider an optical waveguide under normal illumination, so that photon down-conversion can take place to excite waveguide states with opposite momentum in a spectral region populated by only two accessible modes. By additionally configuring the external illumination to interfere different incident directions, we can produce maximally entangled photon-pair states, directly generated as waveguide modes with conversion efficiencies that are competitive with respect to existing macroscopic schemes. These results should find application in the design of more efficient and compact quantum optics devices.

Original languageEnglish
Issue number5
Pages (from-to)1021-1032
Publication statusPublished - 1. Feb 2022


  • entangled guided modes
  • nonlinear optics
  • optical down-conversion
  • quantum optics


Dive into the research topics of 'Direct generation of entangled photon pairs in nonlinear optical waveguides'. Together they form a unique fingerprint.

Cite this