Direct detection of dark matter bound to the Earth

Riccardo Catena, Chris Kouvaris

Research output: Contribution to journalJournal articleResearchpeer-review

118 Downloads (Pure)

Abstract

We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear recoil energy spectra expected at direct detection experiments for the new DM population considering detectors with and without directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is independent of the DM-nucleus scattering cross-section normalization.

Original languageEnglish
Article number063012
JournalPhysical Review D
Volume96
Issue number6
Number of pages15
ISSN2470-0010
DOIs
Publication statusPublished - 2017

Fingerprint

Dive into the research topics of 'Direct detection of dark matter bound to the Earth'. Together they form a unique fingerprint.

Cite this