@inbook{1806ce8b5b314ce2b8b69802fdc7d94e,
title = "Differential geometry applied to rings and m{\"o}bius nanostructures",
abstract = "Nanostructure shape effects have become a topic of increasing interest due to advancements in fabrication technology. In order to pursue novel physics and better devices by tailoring the shape and size of nanostructures, effective analytical and computational tools are indispensable. In this chapter, we present analytical and computational differential geometry methods to examine particle quantum eigenstates and eigenenergies in curved and strained nanostructures. Example studies are carried out for a set of ring structures with different radii and it is shown that eigenstate and eigenenergy changes due to curvature are most significant for the groundstate eventually leading to qualitative and quantitative changes in physical properties. In particular, the groundstate in-plane symmetry characteristics are broken by curvature effects, however, curvature contributions can be discarded at bending radii above 50 nm. A more complicated topological structure, the M{\"o}bius nanostructure, is analyzed and geometry effects for eigenstate properties are discussed including dependencies on the M{\"o}bius nanostructure width, length, thickness, and strain. In the final part of the chapter, we derive the phonon equations-of-motion of thin shells applied to 2D graphene using a differential geometry formulation.",
author = "Benny Lassen and Morten Willatzen and Jens Gravesen",
year = "2018",
month = jan,
day = "1",
doi = "10.1007/978-3-319-95159-1_16",
language = "English",
isbn = "9783319951584",
series = "NanoScience and Technology",
publisher = "Springer VS",
pages = "499--533",
editor = "Fomin, {Vladimir M.}",
booktitle = "Physics of quantum rings",
edition = "2. udg.",
}