Comment on "Artificial intelligence in gastroenterology: A state-of-the-art review"

Research output: Contribution to journalComment/debateResearchpeer-review

Abstract

Colon capsule endoscopy (CCE) was introduced nearly two decades ago. Initially, it was limited by poor image quality and short battery time, but due to technical improvements, it has become an equal diagnostic alternative to optical colonoscopy (OC). Hastened by the coronavirus disease 2019 pandemic, CCE has been introduced in clinical practice to relieve overburdened endoscopy units and move investigations to out-patient clinics. A wider adoption of CCE would be bolstered by positive patient experience, as it offers a diagnostic investigation that is not inferior to other modalities. The shortcomings of CCE include its inability to differentiate adenomatous polyps from hyperplastic polyps. Solving this issue would improve the stratification of patients for polyp removal. Artificial intelligence (AI) has shown promising results in polyp detection and characterization to minimize incomplete CCEs and avoid needless examinations. Onboard AI appears to be a needed application to enable near-real-time decision-making in order to diminish patient waiting times and avoid superfluous subsequent OCs. With this letter, we discuss the potential and role of AI in CCE as a diagnostic tool for the large bowel.

Original languageEnglish
JournalWorld Journal of Gastroenterology
Volume28
Issue number16
Pages (from-to)1722-1724
ISSN1007-9327
DOIs
Publication statusPublished - 28. Apr 2022

Keywords

  • Artificial Intelligence
  • COVID-19
  • Capsule Endoscopy/methods
  • Colonic Polyps/diagnostic imaging
  • Colonoscopy/methods
  • Colorectal Neoplasms/diagnosis
  • Gastroenterology
  • Humans

Fingerprint

Dive into the research topics of 'Comment on "Artificial intelligence in gastroenterology: A state-of-the-art review"'. Together they form a unique fingerprint.

Cite this