Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors

Bastian B. Brandt, Anthony Francis, Benjamin Jäger, Harvey B. Meyer

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

We compute and analyze correlation functions in the isovector vector channel at vanishing spatial momentum across the deconfinement phase transition in lattice QCD. The simulations are carried out at temperatures T/Tc=0.156, 0.8, 1.0, 1.25 and 1.67 with Tc≃203 MeV for two flavors of Wilson-Clover fermions with a zero-temperature pion mass of ≃270 MeV. Exploiting exact sum rules and applying a phenomenologically motivated Ansatz allows us to determine the spectral function ρ(ω,T) via a fit to the lattice correlation function data. From these results we estimate the electrical conductivity across the deconfinement phase transition via a Kubo formula and find evidence for the dissociation of the ρ meson by resolving its spectral weight at the available temperatures. We also apply the Backus-Gilbert method as a model-independent approach to this problem. At any given frequency, it yields a local weighted average of the true spectral function. We use this method to compare kinetic theory predictions and previously published phenomenological spectral functions to our lattice study.

Original languageEnglish
Article number054510
JournalPhysical Review D
Volume93
Issue number5
ISSN2470-0010
DOIs
Publication statusPublished - 1. Mar 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors'. Together they form a unique fingerprint.

Cite this