TY - JOUR
T1 - Characterising Alzheimer's disease through integrative NMR- and LC-MS-based metabolomics
AU - Nielsen, Jonas Ellegaard
AU - Maltesen, Raluca Georgiana
AU - Havelund, Jesper F
AU - Færgeman, Nils J
AU - Gotfredsen, Charlotte Held
AU - Vestergård, Karsten
AU - Kristensen, Søren Risom
AU - Pedersen, Shona
N1 - © 2021 The Authors.
PY - 2021/12
Y1 - 2021/12
N2 - Background: Alzheimer's Disease (AD) is a complex and multifactorial disease and novel approaches are needed to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived metabolites to add insigts to the pathological mechanisms of AD.Methods: Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 °C with a wash. Metabolites from serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered metabolites in cognitively impaired individuals.Results: While no significant EV-derived metabolites were found differentiating patients from healthy individuals, six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC = 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC = 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to controls.Conclusion: Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a biological material for AD-related metabolomics studies.
AB - Background: Alzheimer's Disease (AD) is a complex and multifactorial disease and novel approaches are needed to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived metabolites to add insigts to the pathological mechanisms of AD.Methods: Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 °C with a wash. Metabolites from serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered metabolites in cognitively impaired individuals.Results: While no significant EV-derived metabolites were found differentiating patients from healthy individuals, six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC = 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC = 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to controls.Conclusion: Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a biological material for AD-related metabolomics studies.
U2 - 10.1016/j.metop.2021.100125
DO - 10.1016/j.metop.2021.100125
M3 - Journal article
C2 - 34622190
SN - 2589-9368
VL - 12
JO - Metabolism open
JF - Metabolism open
M1 - 100125
ER -