Ceramide structure dictates glycosphingolipid nanodomain assembly and function

Senthil Arumugam, Stefanie Schmieder, Weria Pezeshkian, Ulrike Becken, Christian Wunder, Dan Chinnapen, John Hjort Ipsen, Anne K. Kenworthy, Wayne Lencer, Satyajit Mayor, Ludger Johannes*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

2 Downloads (Pure)

Abstract

Gangliosides in the outer leaflet of the plasma membrane of eukaryotic cells are essential for many cellular functions and pathogenic interactions. How gangliosides are dynamically organized and how they respond to ligand binding is poorly understood. Using fluorescence anisotropy imaging of synthetic, fluorescently labeled GM1 gangliosides incorporated into the plasma membrane of living cells, we found that GM1 with a fully saturated C16:0 acyl chain, but not with unsaturated C16:1 acyl chain, is actively clustered into nanodomains, which depends on membrane cholesterol, phosphatidylserine and actin. The binding of cholera toxin B-subunit (CTxB) leads to enlarged membrane domains for both C16:0 and C16:1, owing to binding of multiple GM1 under a toxin, and clustering of CTxB. The structure of the ceramide acyl chain still affects these domains, as co-clustering with the glycosylphosphatidylinositol (GPI)-anchored protein CD59 occurs only when GM1 contains the fully saturated C16:0 acyl chain, and not C16:1. Thus, different ceramide species of GM1 gangliosides dictate their assembly into nanodomains and affect nanodomain structure and function, which likely underlies many endogenous cellular processes.

Original languageEnglish
Article number3675
JournalNature Communications
Volume12
Issue number1
Number of pages12
ISSN2041-1723
DOIs
Publication statusPublished - Dec 2021

Fingerprint

Dive into the research topics of 'Ceramide structure dictates glycosphingolipid nanodomain assembly and function'. Together they form a unique fingerprint.

Cite this