Catalytic transport of molecular cargo using diffusive binding along a polymer track

Lifei Zheng*, Hui Zhao, Yanxiao Han, Haibin Qian, Lela Vukovic, Jasmin Mecinović, Petr Král, Wilhelm T.S. Huck

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review


Transport at the molecular scale is a prerequisite for the development of future molecular factories. Here, we have designed oligoanionic molecular sliders on polycationic tracks that exploit Brownian motion and diffusive binding to transport cargo without using a chemical fuel. The presence of the polymer tracks increases the rate of bimolecular reactions between modified sliders by over two orders of magnitude. Molecular dynamics simulations showed that the sliders not only diffuse, but also jump and hop surprisingly efficiently along polymer tracks. Inspired by acetyl-coenzyme A transporting and delivering acetyl groups in many essential biochemical processes, we developed a new and unconventional type of catalytic transport involving sliders (including coenzyme A) picking up, transporting and selectively delivering molecular cargo. Furthermore, we show that the concept of diffusive binding can also be utilized for the spatially controlled transport of chemical groups across gels. This work represents a new concept for designing functional nanosystems based on random Brownian motion.

Original languageEnglish
JournalNature Chemistry
Issue number4
Pages (from-to)359-366
Publication statusPublished - 2019


Dive into the research topics of 'Catalytic transport of molecular cargo using diffusive binding along a polymer track'. Together they form a unique fingerprint.

Cite this