Carbon-Based Nanomaterials for Antiviral Applications

Ángel Serrano-Aroca*, Kazuo Takayama, Yogendra Kumar Mishra, Cesar de la Fuente-Nunez

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

In the antimicrobial resistance era, carbon-based nanomaterials (CBNs) such as fullerenes, carbon dots, graphene, and their derivatives are promising therapeutic tools in combating viral diseases. This review shows that these materials have broad-spectrum antiviral activity against 33 viruses belonging to different Baltimore groups. CBNs also exhibit antimicrobial activity against bacteria and fungi and possess a low risk of selecting for resistance, since their primary mode of antimicrobial action involves physically damaging the microbes. CBNs also offer additional promising properties, including enhanced antiviral effectiveness under diverse types of irradiation and facilitating antiviral immune responses. Their potential as antiviral agents is still in its infancy and future research should focus on their toxicity, antiviral mechanisms, pharmacokinetics, and bioavailability. They are also potential antiviral materials for preventing the transmission of viral diseases for use in face masks, shields, hospital and airport surfaces, and elevators, among others. It is anticipated that CBNs will play an increasingly significant role in the fight against viruses and infectious diseases.
Original languageEnglish
Article number2402023
JournalAdvanced Functional Materials
Volume34
Issue number38
ISSN1616-301X
DOIs
Publication statusPublished - 18. Sept 2024

Fingerprint

Dive into the research topics of 'Carbon-Based Nanomaterials for Antiviral Applications'. Together they form a unique fingerprint.

Cite this