Automatic Grasp Generation and Improvement for Industrial Bin-Picking

Dirk Kraft*, Lars-Peter Ellekilde, Jimmy Alison Rytz

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingBook chapterResearchpeer-review


This paper presents work on automatic grasp generation and grasp learning for reducing the manual setup time and increase grasp success rates within bin-picking applications. We propose an approach that is able to generate good grasps automatically using a dynamic grasp simulator, a newly developed robust grasp quality measure and post-processing methods. In addition we present an offline learning approach that is able to adjust grasp priorities based on prior performance. We show, on two real world platforms, that one can replace manual grasp selection by our automatic grasp selection process and achieve comparable results and that our learning approach can improve system performance significantly. Automatic bin-picking is an important industrial process that can lead to significant savings and potentially keep production in countries with high labour cost rather than outsourcing it. The presented work allows to minimize cycle time as well as setup cost, which are essential factors in automatic bin-picking. It therefore leads to a wider applicability of bin-picking in industry.
Original languageEnglish
Title of host publicationGearing Up and Accelerating Cross‐fertilization between Academic and Industrial Robotics Research in Europe: : Technology Transfer Experiments from the ECHORD Project
EditorsFlorian Röhrbein, Germano Veiga, Ciro Natale
Publication date2014
ISBN (Print)978-3-319-03837-7
ISBN (Electronic)978-3-319-03838-4
Publication statusPublished - 2014
SeriesSpringer Tracts in Advanced Robotics


  • bin picking
  • grasp learning
  • robust grasp quality measure
  • dynamic simulation
  • grasping
  • industrial robotics


Dive into the research topics of 'Automatic Grasp Generation and Improvement for Industrial Bin-Picking'. Together they form a unique fingerprint.

Cite this