Automated quantification of vacuole fusion and lipophagy in Saccharomyces cerevisiae from fluorescence and cryo-soft X-ray microscopy data using deep learning

Jacob Marcus Egebjerg, Maria Szomek, Katja Thaysen, Alice Dupont Juhl, Suzana Kozakijevic, Stephan Werner, Christoph Pratsch, Gerd Schneider, Sergey Kapishnikov, Axel Ekman, Richard Röttger, Daniel Wüstner*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

19 Downloads (Pure)


During starvation in the yeast Saccharomyces cerevisiae vacuolar vesicles fuse and lipid droplets (LDs) can become internalized into the vacuole in an autophagic process named lipophagy. There is a lack of tools to quantitatively assess starvation-induced vacuole fusion and lipophagy in intact cells with high resolution and throughput. Here, we combine soft X-ray tomography (SXT) with fluorescence microscopy and use a deep-learning computational approach to visualize and quantify these processes in yeast. We focus on yeast homologs of mammalian NPC1 (NPC intracellular cholesterol transporter 1; Ncr1 in yeast) and NPC2 proteins, whose dysfunction leads to Niemann Pick type C (NPC) disease in humans. We developed a convolutional neural network (CNN) model which classifies fully fused versus partially fused vacuoles based on fluorescence images of stained cells. This CNN, named Deep Yeast Fusion Network (DYFNet), revealed that cells lacking Ncr1 (ncr1∆ cells) or Npc2 (npc2∆ cells) have a reduced capacity for vacuole fusion. Using a second CNN model, we implemented a pipeline named LipoSeg to perform automated instance segmentation of LDs and vacuoles from high-resolution reconstructions of X-ray tomograms. From that, we obtained 3D renderings of LDs inside and outside of the vacuole in a fully automated manner and additionally measured droplet volume, number, and distribution. We find that ncr1∆ and npc2∆ cells could ingest LDs into vacuoles normally but showed compromised degradation of LDs and accumulation of lipid vesicles inside vacuoles. Our new method is versatile and allows for analysis of vacuole fusion, droplet size and lipophagy in intact cells. Abbreviations: BODIPY493/503: 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-Indacene; BPS: bathophenanthrolinedisulfonic acid disodium salt hydrate; CNN: convolutional neural network; DHE; dehydroergosterol; npc2∆, yeast deficient in Npc2; DSC, Dice similarity coefficient; EM, electron microscopy; EVs, extracellular vesicles; FIB-SEM, focused ion beam milling-scanning electron microscopy; FM 4-64, N-(3-triethylammoniumpropyl)-4-(6-[4-{diethylamino} phenyl] hexatrienyl)-pyridinium dibromide; LDs, lipid droplets; Ncr1, yeast homolog of human NPC1 protein; ncr1∆, yeast deficient in Ncr1; NPC, Niemann Pick type C; NPC2, Niemann Pick type C homolog; OD600, optical density at 600 nm; ReLU, rectifier linear unit; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient; SXT, soft X-ray tomography; UV, ultraviolet; YPD, yeast extract peptone dextrose.

Original languageEnglish
Publication statusE-pub ahead of print - 2023

Bibliographical note

Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.


  • Deep learning
  • lipophagy
  • Niemann-Pick disease
  • segmentation
  • tomography
  • X-ray


Dive into the research topics of 'Automated quantification of vacuole fusion and lipophagy in Saccharomyces cerevisiae from fluorescence and cryo-soft X-ray microscopy data using deep learning'. Together they form a unique fingerprint.

Cite this