TY - JOUR
T1 - Automated pulmonary nodule classification from low-dose CT images using ERBNet
T2 - an ensemble learning approach
AU - Ahmadyar, Yashar
AU - Kamali-Asl, Alireza
AU - Samimi, Rezvan
AU - Arabi, Hossein
AU - Zaidi, Habib
PY - 2025
Y1 - 2025
N2 - The aim of this study was to develop a deep learning method for analyzing CT images with varying doses and qualities, aiming to categorize lung lesions into nodules and non-nodules. This study utilized the lung nodule analysis 2016 challenge dataset. Different low-dose CT (LDCT) images, including 10%, 20%, 40%, and 60% levels, were generated from the full-dose CT (FDCT) images. Five different 3D convolutional networks were developed to classify lung nodules from LDCT and reference FDCT images. The models were evaluated using 400 nodule and 400 non-nodule samples. An ensemble model was also developed to achieve a generalizable model across different dose levels. The model achieved an accuracy of 97.0% for nodule classification on FDCT images. However, the model exhibited relatively poor performance (60% accuracy) on LDCT images, indicating that dedicated models should be developed for each low-dose level. Dedicated models for handling LDCT led to dramatic increases in the accuracy of nodule classification. The dedicated low-dose models achieved a nodule classification accuracy of 90.0%, 91.1%, 92.7%, and 93.8% for 10%, 20%, 40%, and 60% of FDCT images, respectively. The accuracy of the deep learning models decreased gradually by almost 7% as LDCT images proceeded from 100 to 10%. However, the ensemble model led to an accuracy of 95.0% when tested on a combination of various dose levels. We presented an ensemble 3D CNN classifier for lesion classification, utilizing both LDCT and FDCT images. This model is able to analyze a combination of CT images with different dose levels and image qualities.
AB - The aim of this study was to develop a deep learning method for analyzing CT images with varying doses and qualities, aiming to categorize lung lesions into nodules and non-nodules. This study utilized the lung nodule analysis 2016 challenge dataset. Different low-dose CT (LDCT) images, including 10%, 20%, 40%, and 60% levels, were generated from the full-dose CT (FDCT) images. Five different 3D convolutional networks were developed to classify lung nodules from LDCT and reference FDCT images. The models were evaluated using 400 nodule and 400 non-nodule samples. An ensemble model was also developed to achieve a generalizable model across different dose levels. The model achieved an accuracy of 97.0% for nodule classification on FDCT images. However, the model exhibited relatively poor performance (60% accuracy) on LDCT images, indicating that dedicated models should be developed for each low-dose level. Dedicated models for handling LDCT led to dramatic increases in the accuracy of nodule classification. The dedicated low-dose models achieved a nodule classification accuracy of 90.0%, 91.1%, 92.7%, and 93.8% for 10%, 20%, 40%, and 60% of FDCT images, respectively. The accuracy of the deep learning models decreased gradually by almost 7% as LDCT images proceeded from 100 to 10%. However, the ensemble model led to an accuracy of 95.0% when tested on a combination of various dose levels. We presented an ensemble 3D CNN classifier for lesion classification, utilizing both LDCT and FDCT images. This model is able to analyze a combination of CT images with different dose levels and image qualities.
KW - Classification
KW - Computed tomography
KW - Deep learning
KW - Low dose
KW - Lung cancer
U2 - 10.1007/s11517-025-03358-2
DO - 10.1007/s11517-025-03358-2
M3 - Journal article
C2 - 40232605
AN - SCOPUS:105002599598
SN - 0140-0118
JO - Medical and Biological Engineering and Computing
JF - Medical and Biological Engineering and Computing
M1 - e15734056310722
ER -