Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis

Zhiyong Sun, René Hübner, Jian Li, Changzhu Wu*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

47 Downloads (Pure)

Abstract

The natural bacterial spores have inspired the development of artificial spores, through coating cells with protective materials, for durable whole-cell catalysis. Despite attractiveness, artificial spores developed to date are generally limited to a few microorganisms with their natural endogenous enzymes, and they have never been explored as a generic platform for widespread synthesis. Here, we report a general approach to designing artificial spores based on Escherichia coli cells with recombinant enzymes. The artificial spores are simply prepared by coating cells with polydopamine, which can withstand UV radiation, heating and organic solvents. Additionally, the protective coating enables living cells to stabilize aqueous-organic emulsions for efficient interfacial biocatalysis ranging from single reactions to multienzyme cascades. Furthermore, the interfacial system can be easily expanded to chemoenzymatic synthesis by combining artificial spores with metal catalysts. Therefore, this artificial-spore-based platform technology is envisioned to lay the foundation for next-generation cell factory engineering.

Original languageEnglish
Article number3142
JournalNature Communications
Volume13
Number of pages9
ISSN2041-1723
DOIs
Publication statusPublished - 6. Jun 2022

Keywords

  • Biocatalysis
  • Catalysis
  • Emulsions
  • Escherichia coli
  • Solvents

Fingerprint

Dive into the research topics of 'Artificially sporulated Escherichia coli cells as a robust cell factory for interfacial biocatalysis'. Together they form a unique fingerprint.

Cite this