An adaptive E-scheme for conservation laws

Ebise A. Abdi, Christian V. Hansen, H. J. Schroll*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

Abstract

An adaptive E-scheme for possibly degenerate, viscous conservation laws is presented. The scheme makes use of both given and numerical diffusion to establish the E-property. In the degenerate case it reduces to local Lax–Friedrichs. Both explicit and time-implicit E-schemes are monotone and TVD. Numerical experiments demonstrate the robustness and improved accuracy of the adaptive scheme.

Original languageEnglish
Title of host publicationNumerical Mathematics and Advanced Applications ENUMATH 2017
EditorsFlorin Adrian Radu, Kundan Kumar, Inga Berre, Jan Martin Nordbotten, Iuliu Sorin Pop
Volume126
Place of PublicationSwitzerland
PublisherSpringer VS
Publication date1. Jan 2019
Pages379-387
ISBN (Print)9783319964140
ISBN (Electronic)9783319964157
DOIs
Publication statusPublished - 1. Jan 2019
EventEuropean Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017 - Voss, Norway
Duration: 25. Sep 201729. Sep 2017

Conference

ConferenceEuropean Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017
CountryNorway
CityVoss
Period25/09/201729/09/2017
SeriesLecture Notes in Computational Science and Engineering
Volume126
ISSN1439-7358

Fingerprint

experiment

Cite this

Abdi, E. A., Hansen, C. V., & Schroll, H. J. (2019). An adaptive E-scheme for conservation laws. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2017 (Vol. 126, pp. 379-387). Switzerland: Springer VS. Lecture Notes in Computational Science and Engineering, Vol.. 126 https://doi.org/10.1007/978-3-319-96415-7_33
Abdi, Ebise A. ; Hansen, Christian V. ; Schroll, H. J. / An adaptive E-scheme for conservation laws. Numerical Mathematics and Advanced Applications ENUMATH 2017. editor / Florin Adrian Radu ; Kundan Kumar ; Inga Berre ; Jan Martin Nordbotten ; Iuliu Sorin Pop. Vol. 126 Switzerland : Springer VS, 2019. pp. 379-387 (Lecture Notes in Computational Science and Engineering, Vol. 126).
@inproceedings{1aca74b3d9be459baf22b5f625e2632d,
title = "An adaptive E-scheme for conservation laws",
abstract = "An adaptive E-scheme for possibly degenerate, viscous conservation laws is presented. The scheme makes use of both given and numerical diffusion to establish the E-property. In the degenerate case it reduces to local Lax–Friedrichs. Both explicit and time-implicit E-schemes are monotone and TVD. Numerical experiments demonstrate the robustness and improved accuracy of the adaptive scheme.",
author = "Abdi, {Ebise A.} and Hansen, {Christian V.} and Schroll, {H. J.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1007/978-3-319-96415-7_33",
language = "English",
isbn = "9783319964140",
volume = "126",
pages = "379--387",
editor = "Radu, {Florin Adrian} and Kundan Kumar and Inga Berre and Nordbotten, {Jan Martin} and Pop, {Iuliu Sorin}",
booktitle = "Numerical Mathematics and Advanced Applications ENUMATH 2017",
publisher = "Springer VS",

}

Abdi, EA, Hansen, CV & Schroll, HJ 2019, An adaptive E-scheme for conservation laws. in FA Radu, K Kumar, I Berre, JM Nordbotten & IS Pop (eds), Numerical Mathematics and Advanced Applications ENUMATH 2017. vol. 126, Springer VS, Switzerland, Lecture Notes in Computational Science and Engineering, vol. 126, pp. 379-387, European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017, Voss, Norway, 25/09/2017. https://doi.org/10.1007/978-3-319-96415-7_33

An adaptive E-scheme for conservation laws. / Abdi, Ebise A.; Hansen, Christian V.; Schroll, H. J.

Numerical Mathematics and Advanced Applications ENUMATH 2017. ed. / Florin Adrian Radu; Kundan Kumar; Inga Berre; Jan Martin Nordbotten; Iuliu Sorin Pop. Vol. 126 Switzerland : Springer VS, 2019. p. 379-387 (Lecture Notes in Computational Science and Engineering, Vol. 126).

Research output: Chapter in Book/Report/Conference proceedingArticle in proceedingsResearchpeer-review

TY - GEN

T1 - An adaptive E-scheme for conservation laws

AU - Abdi, Ebise A.

AU - Hansen, Christian V.

AU - Schroll, H. J.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - An adaptive E-scheme for possibly degenerate, viscous conservation laws is presented. The scheme makes use of both given and numerical diffusion to establish the E-property. In the degenerate case it reduces to local Lax–Friedrichs. Both explicit and time-implicit E-schemes are monotone and TVD. Numerical experiments demonstrate the robustness and improved accuracy of the adaptive scheme.

AB - An adaptive E-scheme for possibly degenerate, viscous conservation laws is presented. The scheme makes use of both given and numerical diffusion to establish the E-property. In the degenerate case it reduces to local Lax–Friedrichs. Both explicit and time-implicit E-schemes are monotone and TVD. Numerical experiments demonstrate the robustness and improved accuracy of the adaptive scheme.

U2 - 10.1007/978-3-319-96415-7_33

DO - 10.1007/978-3-319-96415-7_33

M3 - Article in proceedings

SN - 9783319964140

VL - 126

SP - 379

EP - 387

BT - Numerical Mathematics and Advanced Applications ENUMATH 2017

A2 - Radu, Florin Adrian

A2 - Kumar, Kundan

A2 - Berre, Inga

A2 - Nordbotten, Jan Martin

A2 - Pop, Iuliu Sorin

PB - Springer VS

CY - Switzerland

ER -

Abdi EA, Hansen CV, Schroll HJ. An adaptive E-scheme for conservation laws. In Radu FA, Kumar K, Berre I, Nordbotten JM, Pop IS, editors, Numerical Mathematics and Advanced Applications ENUMATH 2017. Vol. 126. Switzerland: Springer VS. 2019. p. 379-387. (Lecture Notes in Computational Science and Engineering, Vol. 126). https://doi.org/10.1007/978-3-319-96415-7_33