Research output per year
Research output per year
Xenia G. Borggaard*, Jean Paul Roux, Jean Marie Delaisse, Pascale Chavassieux, Christina M. Andreasen, Thomas L. Andersen
Research output: Contribution to journal › Journal article › Research › peer-review
Despite their ability to reduce fracture-risk and increase Bone Mineral Density (BMD) in osteoporotic women, bisphosphonates are reported to reduce formation of new bone. Reduced bone formation has been suggested to lead to accumulation of microfractures and contribute to rare side effects in cortical bone such as atypical femur fractures. However, most studies are limited to trabecular bone. In this study, the cortical bone remodeling in human iliac bone specimens of 65 non-treated and 24 alendronate-treated osteoporotic women was investigated using a new histomorphometric classification of intracortical pores. The study showed that only 12.4 ± 11% of the cortical pore area reflected quiescent pores/osteons in alendronate-treated patients versus 8.5 ± 5% in placebo, highlighting that new cortical remodeling events remain to be activated. The percent and size of eroded pores (events in resorption-reversal phase) remained unchanged, but their contribution to total pore area was 1.4-fold higher in alendronate versus placebo treated patients (66 ± 22% vs 48 ± 22%, p < 0.001). On the other hand, the mixed eroded-formative pores (events with mixed resorption-reversal-formation phases) was 2-fold lower in alendronate versus placebo treated patients (19 ± 14% vs 39 ± 23% of total pore area, p < 0.001), and formative pores (event in formation phase) was 2.2-fold lower in alendronate versus placebo treated patients (2.1 ± 2.4% vs 4.6 ± 3.6%, p < 0.01), and their contribution to total pore area was 2.4-fold lower (1.3 ± 2.1% vs 3.1 ± 4.4%, p < 0.05). Importantly, these differences between alendronate and placebo treated patients were significant in patients after 3 years of treatment, not after 2 years of treatment. Collectively, the results support that cortical remodeling events activated during alendronate treatment has a prolonged reversal-resorption phase with a delayed transition to formation, becoming increasingly evident after 3-years of treatment. A potential contributor to atypical femur fractures associated with long-term bisphosphonate treatment.
Original language | English |
---|---|
Article number | 116419 |
Journal | Bone |
Volume | 160 |
Number of pages | 9 |
ISSN | 8756-3282 |
DOIs | |
Publication status | Published - Jul 2022 |
Research output: Thesis › Ph.D. thesis